AEROSPACE ENGINEERING (LM52)

(Brindisi - Università degli Studi)

Teaching HYBRID ELECTRIC		Teaching in italian HYBRID ELECTRIC AIRCRAFT	Course year 2
AIRCRAFT		Teaching HYBRID ELECTRIC AIRCRAFT	Language ENGLISH
GenCod A004328		SSD code ING-IND/08	Curriculum PERCORSO COMUNE
Owner professor Teresa DONATEO		Reference course AEROSPACE ENGINEERING	
		Course type Laurea Magistrale	Location Brindisi
		Credits 9.0	Semester Second Semester
		Teaching hours Front activity hours: 81.0	Exam type Oral
		For enrolled in 2016/2017	Assessment Final grade
		Taught in 2017/2018	Course timetable https://easyroom.unisalento.it/Orario
BRIEF COURSE DESCRIPTION	Conventional an	d advanced propulsion systems for aircra	ft
REQUIREMENTS	Sufficiency in flight mechanics and aerospace propulsion. Knowledge of working principles and thermo-fluidodynamic processes of Fluid Machinery and Energy Systems		
COURSE AIMS	Overview The objectives of the course is to present a unified modeling approach for conventional and advanced aircraft powertrains that takes into account the specifications and the performance of their main components (energy converters, energy storage systems, energy transformes) and the flight mechanic of the aircraft		
	*Describe the we *Compare perfor part load; *Describe and co *Describe the ac electric aircraft; * Describe the we storage systems	ompare conventional and advanced super dvantages and disadvantages of more ele vorking principle and compare different te	combustion engines; Nankel and turbine engines in flight and at charging systems; ectric aircraft, more electric engines, hybrid echnologies of electric machines and electri

ASSESSMENT TYPE	written, <u>project work</u> The exam consists of two parts the first part is a written test; the student is asked to illustrate one theoretical topic; it is aimed to verify to what extent the student has gained knowledge and understanding of the selected topic of the course and is able to communicate about his/her understanding; the second part: a project works regarding the simulation and/or optimization of an advanced powertrain; it is aimed to determine to what extent the student has problem solving abilities and the capacity to integrate different concepts and tools.
FULL SYLLABUS	Conventional and advanced propulsion systems for aircraft: Turboprop and piston-prop systems. Propeller theory and modeling. More Electric Aircraft. Hybrid electric aircraft. Electric flight: fuel cell systems versus battery-based powertrains (6 hours); Engines for aircraft: Theory and modeling of piston, wankel and gas turbine engines. Effect of load and altitude on the performance of internal combustion engines. Conventional and advanced turbocharging systems. Performance maps of engines and propellers. Willan's line scaling model. (21 hours). Solution to assigned problems with computer based techniques (10 hours).
	Electric machines: Classifications, performance maps, simplified models. (6 hours) Secondary storage systems: Battery and supercapacitor. Energy and power densities, nominal capacity, life cycles. Simplified models. Other storage systems. (6 hours) Energy management strategies: Charge depleting and charge sustaining. Supervisory controllers for series and parallel hybrid
	electric power systems. (6 hours) Modeling and optimization of advanced powetrains Backward and forward paradigms. Optimization methods and tools. Evolutionary algorithms for single-objective, multi-objective and many-objective optimization (9 hours). Homework (18 hours).
REFERENCE TEXT BOOKS	[1] Handouts (intranet.unisalento.it). [2] Saeed Farokhi, "Aircraft Propulsion", Wiley [3] Guzzella, Sciarretta, "Vehicle Propulsion Systems", Springer [4] Heywood, "Internal Combustion Engines Fundamentals", McGraw-Hill [5] Pilot's Handbook of Aeronautical knowledge, chapter 7 (Aircraft Systems)