
COMPUTER ENGINEERING (LM55)
(Lecce - Università degli Studi)

Teaching PARALLEL ALGORITHMS

GenCod A003130
Owner professor Massimo CAFARO

Teaching in italian PARALLEL
ALGORITHMS
Teaching PARALLEL ALGORITHMS

SSD code ING-INF/05 Curriculum PERCORSO COMUNE

Reference course COMPUTER
ENGINEERING

Language ENGLISH

Course type Laurea Magistrale

Credits 9.0

Teaching hours Front activity hours:
81.0

For enrolled in  2019/2020

Taught in 2020/2021

Location Lecce

Semester First Semester

Exam type Oral

Assessment Final grade

Course timetable
https://easyroom.unisalento.it/Orario

Course year 2

BRIEF COURSE
DESCRIPTION

The  course  provides  a  modern  introduction  to  design,  analysis  and  implementation  of  sequential
and  parallel  algorithms.  In  particular,  the  course  is  based  on  a  pragmatic  approach  to  parallel
programming  of  message-passing  algorithms  through  the  C  language  and  the  MPI  library.

Calculus  I  and  II,  Probability  Theory.  Programming  skills  and  working  knowledge  of  the  C
programming  language.

REQUIREMENTS

1



Knowledge and understanding. Students must have a solid background with a broad spectrum of
basic knowledge of sequential and parallel algorithms:

· the students must have the basic cognitive tools to think analytically, creatively, critically and in an
inquiring  way,  and  have  the  abstraction  and  problem-solving  skills  needed  to  cope  with  complex
systems;
·  they  must  have  a  solid  knowledge  of  the  design  and  implementation  of  sequential  and  parallel
efficient  algorithms;
· they must have the tools for analysing the resources used by algorithms;
·  they  must  have  a  catalogue  of  the  most  well-known  and  efficient  sequential  and  parallel
algorithms  for  basic  computational  problems.

Applying knowledge and understanding. After the course the student should be able to:

· Describe and use the main design techniques for sequential algorithms;
· Design, prove the correctness and analyze the computational complexity of sequential algorithms;
·  Understand  the  differences  among  several  algorithms  solving  the  same  problem  and  recognize
which  one  is  better  under  different  conditions;
· Describe and use basic sequential algorithms;
· Describe and use basic data structures; know about the existence of advanced data structures;
· Understand the difference between sequential and parallel algorithms;
·  Design,  implement  and  analyze  message-passing  based  parallel  algorithms  in  C  using  the  MPI
library;
· Describe and use basic parallel algorithms.

Making judgements. Students are guided to learn critically everything that is explained to them in
class,  to  compare  different  approaches  to  solving  algorithmic  problems,  and  to  identify  and
propose,  in  an  autonomous  way,  the  most  efficient  solution  they  find.

Communication. It is essential that students are able to communicate with a varied and composite
audience,  not  culturally  homogeneous,  in  a  clear,  logical  and  effective  way,  using  the
methodological  tools  acquired  and  their  scientific  knowledge  and,  in  particular,  the  specialty
vocabulary.  The course promotes the development of the following skills of the student:  ability to
expose in precise and formal terms an abstract model of concrete problems, identifying the salient
features of them and discarding the nonessential ones; ability to describe and analyze an efficient
solution to the problem in question.

Learning skills. Students must acquire the critical ability to relate, with originality and autonomy, to
the  typical  problems  of  data  mining  and,  in  general,  cultural  issues  related  to  other  similar  areas.
They should be able to develop and apply independently the knowledge and methods learnt with a
view to possible  continuation of  studies at  higher  (doctoral)  level  or  in  the broader  perspective of
cultural and professional self-improvement of lifelong learning. Therefore, students should be able
to  switch  to  exhibition  forms  other  than  the  source  texts  in  order  to  memorize,  summarize  for
themselves  and  for  others,  and  disseminate  scientific  knowledge.

COURSE AIMS

2



The  course  aims  to  enable  students  to  abstract  formal  algorithmic  models  and  problems  from
concrete computational  problems,  and to design efficient  algorithmic solutions for  them. This  will
be  done  using  the  following  teaching  method.  Every  computational  problem  will  be  introduced,
motivating it with concrete examples. The presentation of each topic will be divided into four parts:
1. Description of the actual computational problem. 2. Modelling the real problem by means of an
abstract problem. 3. Resolution of the abstract problem through an algorithm obtained through the
application of the general techniques of design of algorithms introduced in the course. 4. Analysis of
the  resources  used  by  the  algorithm.  The  course  consists  of  frontal  lessons,  and  classroom
exercises.  There  will  be  theoretical  lessons  aimed at  learning  the  basic  techniques  for  the  project
and  analysis  of  algorithms,  and  a  part  of  lessons  devoted  to  exercises  in  which  we  will  illustrate,
with  plenty  of  examples,  how  the  theoretical  knowledge  acquired  can  be  used  in  order  to  solve
algorithmic problems of practical interest and implement parallel algorithms in C language through
the MPI library.

TEACHING METHODOLOGY

3



The  exam  consists  of  a  written  test  and  a  prototype  implementation  of  a  parallel  software.  The
written  test  (3  hours,  21  points  out  of  30)  covers  theoretical  topics  related  to  the  design  and
analysis  of  sequential  and  parallel  algorithms  in  order  to  verify  the  student’s  knowledge  and
understanding of the materials. In order to pass the written test, students must obtain at least 14
points out of 21. The parallel software prototype (9 points out of 30) is meant to verify the practice
of parallel programming and the ability of the student to implement theoretical parallel algorithms
or  to  parallelize  a  sequential  algorithm.  In  order  to  pass  the  parallel  programming  challenge,
students  must  obtain  at  least  4  points  out  of  9.  Both  the  written  test  and  the  prototype
implementation of parallel software are mandatory. Students must pass both the written test and
the parallel programming challenge.

WARNING: THE FOLLOWING ARE DETAILED INSTRUCTIONS RELATED TO ONLINE WRITTEN TESTS
USING MICROSOFT TEAMS

Written test of
Parallel Algorithms

Microsoft Teams is used to verify the student's identity and to supervise the test; the teacher will
select each student asking him to show his identification document. The exam takes place within a
team  that  students  access  through  registration  by  the  teacher  or  through  a  link  that  will  be
communicated  via  email.  Students  are  asked  to  enter  the  team  at  least  15  minutes  prior  to  the
scheduled start  time in  order  to  perform recognition.  Each student  will  participate  in  the meeting
through a device equipped with a microphone and a webcam that must remain on for the duration
of the test, framing the student and the paper on which he/she writes. The teacher will check the
regularity of the students' work, immediately cancelling the test in case of irregularities of any kind.
For the distribution of the exam outline to the students, the teacher shares a pdf file in the TEAMS
chat.  The track  is  divided into  3  exercises for  Parallel  Algorithms,  and the teacher  releases to  the
students each of the exercises that compose it at fixed time intervals. The test is then carried out as
follows:

1. The teacher releases the first exercise at the beginning of the roll call;
a. students print out the text of the exercise and begin drafting the paper on a sheet of paper clearly
visible from the video capture device;
b. the teacher provides his/her estimate x of sufficient time to answer;
c. delivery of the paper related to the first exercise after x amount of time has elapsed;
d. Teacher waits 2 minutes for delivery;

2. Teacher delivers the second exercise;
a. students print out the text of the exercise and begin writing the paper on a sheet of paper clearly
visible from the video capture device;
b. teacher gives his estimate y of sufficient time to answer;
c. delivery of the paper related to the second exercise after the time y has elapsed;
d. The teacher waits 2 minutes for the delivery;

3. Teacher releases the third exercise;
a. students print out the text of the exercise and begin writing the paper on a piece of paper that is
clearly visible from the video capture device;
b. teacher gives his estimate z of sufficient time to answer;
c. delivery of the paper related to the second exercise after the time z has elapsed;
d. The teacher waits 2 minutes for the delivery;

ASSESSMENT TYPE

4



4. The teacher informs the participating students that the roll call is closed.

For the delivery of the papers related to the individual exercises, the student is requested to take a
photo  of  the  relative  sheets,  including  an  image  of  the  university  booklet  or,  alternatively,  an
identification document.  The photos should be placed in  a  directory called "Exercise_a_b_c_d" in
which:
- a indicates the progressive number of the exercise (1, 2 or 3);
- b is PA (for Parallel Algorithms)
- c indicates the student's first name;
- d indicates the student's last name.
The directory must then be compressed, e.g. in zip format, and the resulting file must be delivered
via team chat.
It  is not possible to turn in an exercise before the allotted time and move on to the next exercise.
The student who intends to abandon the test can give notice to the teacher at any time, and leave
the  team  immediately  afterwards.  It  is  not  possible  to  leave  for  any  reason  during  the  test.  The
student  is  required  to  ensure  that  he/she  has  everything  necessary  for  the  test  (microphone,
webcam,  printer,  camera,  pen,  adequate  number  of  sheets  of  paper).

Office Hours
By appointment; contact the instructor by email or at the end of class meetings.

OTHER USEFUL INFORMATION

Parallel Algorithms
Introduction.  Parallel  Architectures.  Parallel  algorithm  design.  Message-Passing  Programming.
Sieve of Erathostenes. Floyd all-pairs shortest path algorithm. Performance analysis. Matrix-vector
multiplication.  Document  classification.  Matrix  multiplication.  Linear  Systems.  Finite  Difference
Methods.  Sorting.

Parallel Programming

Message-Passing programming using MPI.

Sequential Algorithms

Introduction.  Order  of  growth.  Analysis  of  algorithms.  Decrease  and  conquer.  Divide  and  conquer.
Recurrences.  Randomized  algorithms.  Transform  and  conquer.  Dynamic  programming.  Greedy
algorithms.  Single  Source  Shortest  Paths.  Dijkstra  algorithm.  Breadth-First  Search.  Bellman-Ford
Algorithm.  Complexity  and  computability.  NP-Completeness.  The  transition  from  sequential  to
parallel  computing.  Parallel  complexity.

FULL SYLLABUS

Introduction to Algorithms. Third edition. Cormen, Leiserson, Rivest, Stein. The MIT Press
Parallel Programming in C with MPI and OpenMP (International Edition). Michael J. Quinn. McGraw-
Hill

REFERENCE TEXT BOOKS

5


