FISICA GENERALE II

Insegnamento
FISICA GENERALE II
Insegnamento in inglese
PHYSICS II
Settore disciplinare
FIS/01
Corso di studi di riferimento
MATEMATICA
Tipo corso di studio
Laurea
Crediti
6.0
Ripartizione oraria
Ore Attività frontale: 42.0
Anno accademico
2017/2018
Anno di erogazione
2018/2019
Anno di corso
2
Lingua
ITALIANO
Percorso
PERCORSO COMUNE
Docente responsabile dell'erogazione
SPAGNOLO Stefania Antonia

Descrizione dell'insegnamento

Dimestichezza con le leggi generali della meccanica

Fenomeni elettrici e magnetici nel vuoto.  

Introduzione all'elettromagnetismo; comprensione degli aspetti fondanti della teoria che descrive elettricità e magnetismo e delle relazioni che legano questi fenomeni; abilità nella risoluzione di problemi su campi di forze determinati da distribuzioni di cariche e di correnti.  

Lo studente sarà indirizzato a sviluppare la capacità di formalizzare problemi sia di carattere teorico e generale che di carattere applicativo e pratico. 

Lezioni teoriche ed esercitazioni

scritto ed eventuale orale; oppure orale con svolgimento di esercizi; sono previste  prove intermedie.  Tutti i compiti (alcuni con soluzioni) sono reperibili all'indirizzo http://www.dmf.unisalento.it/~spagnolo/materialeFisII_CdS_Mat/

Scheda e Diario delle lezioni aa 2018-2019 

Campi scalari e campi vettoriali.

Rappresentazione di un campo scalare, superfici di livello.

Gradiente di un campo scalare; interpretazione geometrica. Teorema del gradiente.

Gradiente di un campo scalare e campi vettoriali conservativi.

Rappresentazioni di campi vettoriali; linee di campo.

Flusso di un campo vettoriale attraverso una superficie generica.

Divergenza e rotore di un campo vettoriale.

Teorema della divergenza e teorema di Stokes.

Campi irrotazionali e campi solenoidali.

Prime evidenze dei fenomeni elettrici e delle proprieta’ di materiali isolanti e conduttori.

Legge di Coulomb (forza tra due cariche puntiformi) e principio di sovrapposizione.

Densita’ volumetrica, superficiale e lineare di carica.

Definizione di campo elettrico.

Espressione del campo elettrico prodotto da una distribuzione volumetrica (o in generale estesa) di carica.

Energia potenziale di una carica in un campo elettrostatico Coulombiano.

Potenziale elettrostatico Coulombiano e potenziale elettrostatico per una distribuzione generica di cariche.

Energia elettrostatica di un sistema discreto e continuo di cariche.

Potenziale elettrostatico e campo generati da un dipolo elettrico.

Forza, energia potenziale e momento su un dipolo immerso in un campo elettrico esterno. Configurazioni di equilibrio, moto di rotazione oscillatoria attorno alla posizione di equilibrio stabile.

Sistema discreto di cariche puntiformi: sviluppo in serie di multipoli del potenziale elettrostatico in punti distanti dalle cariche sorgente.

Misura della carica elettrica elementare (esperimento di Millikan 1910)

Legge di Gauss in forma locale e differenziale. Dimostrazione e metodo di utilizzo della legge di Gauss per il calcolo del campo elettrico e potenziale in configurazioni di sorgente simmetriche.

Esperimento di Rutherford. Teorema di Coulomb. Equazioni di Poisson e Laplace. Proprietà delle funzioni armoniche, soluzioni dell’equazione di Laplace.

Espressione dell’energia elettrostatica di un sistema in funzione del campo elettrico.

Conduttori all’equilibrio elettrostatico, proprietà generali. Unicità della soluzione del problema generale dell’elettrostatica (con condizioni allaDirichlet, Neumann o miste).

Metodo delle cariche imagine.

Sistema di conduttori, relazioni tra cariche e potenziali; coefficienti di potenziale e di capacità.

Capacità di un sistema di due conduttori; energia immagazzinata nel capacitore.

Condensatori collegati in serie e parallelo.

Corrente elettrica e densità di corrente.

Modello di Drude della conduzione elettrica. Equazione di continuità della carica. Legge di Ohm. Potenza erogata e dissipata in un circuito percorso da corrente.

Esempi di circuiti con generatori di d.d.p. costante; carica e scarica di un condensatore (e bilancio energetico); resistori in serie e parallelo;

Introduzione alle trasformazioni di Lorentz.

Campo elettrico e magnetico prodotti da una carica in movimento.

Forza di Lorentz, Moto di una carica elettrica in un campo magnetico uniforme.

Forza su una carica in moto con velocita’ v in prossimita’ di un filo percorso da corrente come effetto del campo elettrico (non conservativo) prodotto dai portatori di carica in moto del filo conduttore.

Introduzione al campo magnetico: osservazioni sperimentali. Seconda legge di Laplace, B solenoidale.

Prima legge di Laplace, Legge di Ampere in forma locale e integrale. Potenziale vettore, invarianza di gauge ed equazioni per il potenziale vettore (in magnetostatica) nella gauge di Coulomb (divA=0).

Applicazione della legge di Ampere al calcolo del campo magnetico prodotto da distribuzioni simmetriche di correnti.

Eguaglianza dei coefficienti di mutua induzione tra due circuiti.

 

Si vedano anche la Scheda dell'insegnamento e il Diario delle lezioni nella sezione "Altre informazioni utili"

testi suggeriti: 

P. Mazzoldi, M. Nigro, C. Voci “Fisica, volume II” EdiSES

La Fisica di Berkeley, Vol. II: Elettricità e magnetismo”, di Edward Mills Purcell

E. Amaldi, R. Bizzarri, G. Pizzella “Fisica Generale, elettromagnetismo, relatività, ottica”, Zanichelli Editore

Semestre
Secondo Semestre (dal 25/02/2019 al 31/05/2019)

Tipo esame
Obbligatorio

Valutazione
Orale - Voto Finale

Orario dell'insegnamento
https://easyroom.unisalento.it/Orario

Scarica scheda insegnamento (Apre una nuova finestra)