BIOLOGIA SPERIMENTALE ED APPLICATA (LM68)

(Lecce - Università degli Studi)

Insegnamento BIOLOGIA DELLO SVILUPPO

GenCod A002430

Docente titolare Patrizia PAGLIARA

Insegnamento BIOLOGIA DELLO

SVILUPPO

Insegnamento in inglese DEVELOPMENTAL BIOLOGY

Settore disciplinare BIO/06

Anno di corso 2

Lingua ITALIANO

Percorso BIOSANITARIO

Corso di studi di riferimento BIOLOGIA SPERIMENTALE ED APPLICATA

Tipo corso di studi Laurea Magistrale

Sede Lecce

Crediti 6.0 Periodo Primo Semestre

Ripartizione oraria Ore Attività frontale: Tipo esame Orale

48.0

Per immatricolati nel 2019/2020

Valutazione Voto Finale

Erogato nel 2020/2021 Orario dell'insegnamento

https://easyroom.unisalento.it/Orario

BREVE DESCRIZIONE DEL CORSO

Nel corso di Biologia dello sviluppo verranno studiati i fenomeni connessi alla biologia dello sviluppo (differenziamento, morfogenesi e accrescimento) sia dal punto di vista dell'embriologia sperimentale, sia dei processi molecolari che li regolano

PREREQUISITI

Conoscenze scientifiche di biologia cellulare e di embriologia

OBIETTIVI FORMATIVI

a) Fornire le conoscenze di base sull'insieme di processi morfogenetici che dallo zigote generano un organismo pluricellulare. Fornire la conoscenza sui principali eventi di controllo genetico-molecolare operanti nello sviluppo.

b) Spiegare sia i meccanismi cellulari e molecolari alla base dei processi di sviluppo e di differenziamento cellulare, che le relazioni tra embriologia, biologia dello sviluppo e teoria dell'evoluzione.

d) Analizzare gli aspetti applicativi in campo bio-medico e tecnologico.

METODI DIDATTICI

Sono previsti 6 CFU di lezioni teoriche (48 ore). Le lezioni si svolgono settimanalmente in aula e/o in via telematica con l'ausilio di diapositive in formato Power Point, filmati e collegamenti a siti internet specifici e mediante utilizzo della lavagna in dotazione nelle aule

MODALITA' D'ESAME

Il conseguimento dei crediti attribuiti all'insegnamento è ottenuto mediante una prova orale, che potrà tenersi in via telematica in base alle regole relative all'emergeza COVID19. Durante il colloquio sono valutati i risultati di apprendimento complessivamente acquisiti dallo studente. La votazione finale è espressa in trentesimi, con eventuale lode. Nell'attribuzione del punteggio si terrà conto in maniera proporzionale di diversi parametri:

- -livello delle conoscenze teoriche acquisite (65%);
- -capacità di applicare le conoscenze acquisite (15%);
- -autonomia di giudizio (10%);
- -abilità comunicative (10%).

PROGRAMMA ESTESO

Introduzione: note storiche con riferimento alle teorie dell'epigenesi, del preformismo, del plasma germinale e alle definizioni di sviluppo regolativo e sviluppo a mosaico.

Le fasi iniziali dell'embriogenesi: fecondazione,

segmentazione e gastrulazione; piano strutturale dell'embrione a tre foglietti nei diversi organismi modello dai nematodi ai mammiferi.

Comunicazione tra cellule durante lo sviluppo: adesione cellulare e determinazione del destino cellulare, affinità differenziale, segregazione spaziale. Interazioni cellula-matrice extracellulare e ruolo nel differenziamento, proliferazione e migrazione cellulare.

Regolazione dello sviluppo: Ruolo dei geni materni nella segmentazione. I morfogeni. Attivazione del genoma zigotico.

I meccanismi molecolari dello sviluppo: equivalenza del genoma. Espressione differenziale dei geni durante lo sviluppo: imprinting genomico, metilazione, acetilazione, condensazione della cromatina, fattori di trascrizione e loro modalità di azione. Esempi di differenziamento e di transdifferenziamento. Apoptosi.

L'induzione primaria: Esperimenti di Spemann e Mangold: scoperta dell'induzione embrionale primaria. Il centro di Nieuwkoop: l'induzione del mesoderma dorsale e la formazione dell'organizzatore. Segnali diffusibili e molecole coinvolte nella dorsalizzazione. Specificità regionale dell'induzione.

Esempi di organogenesi: sviluppo e differenziamento dell'arto, occhio, rene e cuore. Ematopoiesi, miogenesi, differenziamento delle cellule della cresta neurale.

Applicazioni bio-mediche e tecnologiche: Fecondazione in vitro. Le cellule staminali: origine, potenzialità e limiti. La clonazione e gli esperimenti di trapianto nucleare. La clonazione terapeutica.

TESTI DI RIFERIMENTO

Gilbert F.S., Biologia dello sviluppo, Zanichelli. Wolpert L., Biologia dello sviluppo, Zanichelli. Giudice., Augusti-Tocco., Campanella., Biologia dello sviluppo, Piccin.

