AEROSPACE ENGINEERING (LM52)

(Brindisi - Università degli Studi)

Teaching EMBEDDED AND CERTIFIED SOFTWARE

GenCod A005860 Owner professor MICHELE RUTA

Teaching in italian EMBEDDED AND CERTIFIED SOFTWARE	Course year 2
Teaching EMBEDDED AND CERTIFIED SOFTWARE	Language ENGLISH
SSD code ING-INF/05	Curriculum SYSTEMS
Reference course AEROSPACE ENGINEERING	
Course type Laurea Magistrale	Location Brindisi
Credits 9.0	Semester Second Semester
Teaching hours Front activity hours: 81.0	Exam type Oral
For enrolled in 2019/2020	Assessment Final grade
Taught in 2020/2021	Course timetable https://easyroom.unisalento.it/Orario

BRIEF COURSE DESCRIPTION

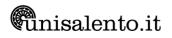
• Software development for embedded systems: general overview. Case study: the GCC compiler and the GDB debugger.

• Software for mobile devices. Case study: iOS and Android. iOS and Android OS architecture. Introduction to mobile Applications development; certificato requirements for the applications distribution.

• Software for robotics. Case study: ROS (Robot Operating System). General overview. Development of a ROS node. Introduction to typical issues in autonomous robots.

• Software for real-time embedded Operating Systems. Case study: OSEK-OS. AUTOSAR (quick overview).

• Model-based embedded software design: general overview. Model checking and statistical model checking. Case study: Uppaal SMC.


Blockchain and Smart Contracts.

REQUIREMENTS

Fundamentals of Computer Science. Fundamentals of Digital Electronics. Knowledge of at least a programming language.

COURSE AIMS	
	 Knowledge and understanding
	Main concepts of design, development, test and certification of embedded software for a specific
	application in mobile, robotic and control systems.
	application in mobile, fobolic and control systems.
	 Ability to apply knowledge and understanding
	Capability of designino, developing, testing and validating an embedded software according to
	external requirements (user and systems requirements) and internal requirements (current
	regulations and certification processes).
	regulations and certification processes).
	 Ability of evaluation
	Capability of knowledge of problems and ability to identify a proper solution.
	capability of knowledge of problems and ability to identify a proper solution.
	 Ability of speaking
	Capability of communicating with a proper technical language.
	Learning ability
	Capability of autonomously improving abilities and knowledge.
TEACHING METHODOLOGY	Lectures for presenting general teorethical concepts and models corroborated by selected case
	studies, examples and exercises.
ASSESSMENT TYPE	End-course written test containing open answer questions, multiple choice questions and practical
	exercises in order to evaluate learning and speaking abilities as well as the capability of problem
	understanding and solving.
	Optional ora examination on the course contents, only after a positive output of the written test
	(mark equal or above 18/30).
OTHER USEFUL INFORMATION	Further e-mail for communications: michele.ruta@poliba.it

FULL SYLLABUS

• Development of software for embedded systems: general overview, software compiling, crosscompiling, development environments, build system. Case study: GCC compiler and debugger GDB.

• Software for mobile devices: general overview. Case studies: iOS and Android. Architecture of the Operating Systems (O.S.) iOS and Android: kernel, layers, runtime environment. Security features and energy management. Introduction to mobile applications development: lifecycle of an application, architectural patterns and basic APIs. Certification requirements for distributing applications on the App Store.

 Software for robotic devices. Case study: ROS (Robot Operating System). General requirements, architecture, publish/subscribe framework, services, package. Development of a ROS node. Introduction to typical issues of autonomous robots: mapping, path planning, path following, motion control. Gazebo simulator and RViz viewer.

• Software for real-time embedded O.S.. Case study OSEK-OS: task development model, OIL language for system configuration specification, task lyfecycle, O.S. features. AUTOSAR platforms Classic and Adaptive (quick overview).

 Model-based embedded software design: general overview, verification and validation, V model. Generali concepts of model checking: automatas and Kripke structures, propositional and temporali logics LTL e CTL, verifiable property types. Statistical model checking. Case study: Uppaal SMC.

REFERENCE TEXT BOOKS

 Teaching resources at the Web page: http://sisinflab.poliba.it/ruta/(link 'Embedded and Certified Software')

• Manuals and tutorials of software tools presented as case studies: GCC and GDB, official documentation for iOS and Android developers, ROS, Catkin, Gazebo, OSEK-OS, RT-Druid, Uppaal SMC.

A. Silberschatz, P.B. Galvin, G. Gagne, Operating System Concepts, Wiley

