MATEMATICA GENERALE (A - L)

Insegnamento
MATEMATICA GENERALE
Insegnamento in inglese
MATHEMATICS
Settore disciplinare
Corso di studi di riferimento
ECONOMIA AZIENDALE
Tipo corso di studio
Laurea
Crediti
8.0
Ripartizione oraria
Ore Attività frontale: 64.0
Anno accademico
2019/2020
Anno di erogazione
2019/2020
Anno di corso
1
Lingua
ITALIANO
Percorso
PERCORSO COMUNE
Docente responsabile dell'erogazione
MASTROLEO Giovanni

Descrizione dell'insegnamento

Le conoscenze e le competenze che lo studente deve possedere per comprendere i contenuti delle lezioni e raggiungere gli obiettivi formativi dell’insegnamento sono quelle, di base, che sono state acquisite nella scuola superiore; verranno comunque ripresentate nel Precorso, tenuto dal Docente nella settimana precedente a quella dell’inizio del corso. Il Precorso è fortemente consigliato indipendentemente dalla preparazione.

Non sono previste propedeuticità.

 

Precorso (15 ore) [riferimento: testo a) cap. 2, 5]

 

  • Monomi. Polinomi. Prodotti notevoli. Divisione di polinomi. Scomposizioni. Frazioni algebriche.
  • Radicali. Potenza a esponente razionale. Radicali algebrici. Equazioni lineari (principi di equivalenza, equazioni di primo grado, di secondo e superiore al secondo).
  • Equazioni razionali fratte. Equazioni parametriche. Equazioni irrazionali. Equazioni con valore assoluto. Sistemi lineari (metodo di sostituzione, del confronto, di addizione).
  • Disequazioni (principi di equivalenza, equazioni di primo grado, di secondo e superiore al secondo). Disequazioni razionali fratte. Sistemi di disequazioni.
  • Disequazioni con valore assoluto. Disequazioni irrazionali.

Il corso propone le conoscenze di base dell'analisi matematica per funzioni di una variabile e le tecniche di calcolo più idonee ad affrontare in modo adeguato le discipline delle aree aziendali, economiche, finanziarie e statistiche.

Conoscenza e comprensione: lo studente dovrà acquisire le conoscenza fondamentali dell’analisi matematica per lo studio di funzioni di una variabile e le tecniche di calcolo necessarie allo studio di materie previste dal proprio piano di studio.

Capacità di applicare conoscenze e comprensione: lo studente dovrà acquisire le metodologie proprie dell'analisi matematica e sarà in grado di applicarle allo studio di problemi in ambiti diversi, tipicamente aziendali, economici e finanziari.

Autonomia di giudizio: lo studente dovrà essere in grado di applicare i metodi dell'analisi matematica per utilizzare sia sul piano concettuale sia su quello operativo le conoscenze acquisite al fine di risolvere nuovi problemi, anche di natura applicativa.

Abilità comunicative: lo studente dovrà acquisire la capacità di esprimere i concetti fondamentali dell'analisi matematica per comunicare in modo chiaro e senza ambiguità con interlocutori con diversi livelli di preparazione scientifica.

Capacità di apprendimento: lo studente dovrà acquisire la capacità di continuare a far uso degli strumenti matematici appresi, soprattutto nello studio di nuove materie.

Lezioni frontali, teoriche e pratiche. Saranno programmate esercitazioni extra-curriculari se ci sarà la disponibilità di Tutor e di aule, in accordo con gli orari degli altri corsi del primo anno.

Il ricevimento didattico settimanale è riservato esclusivamente a spiegazioni teoriche ed approfondimenti degli argomenti trattati a lezione; per ottimizzare i tempi di ricevimento si consiglia di presentarsi (singolarmente o in gruppo) con uno o più argomenti ben determinati (e sicuramente dopo aver almeno individuato sul testo il problema).

E’ obbligatoria l’iscrizione sia alla prova scritta che a quella orale. Chi non risulta iscritto ad entrambe le prove non accede all’appello.

Oltre alla capacità di eseguire correttamente calcoli applicando le tecniche acquisite nel corso, l’obiettivo dell’esame è verificare la padronanza nell’utilizzo concettuale delle funzioni e degli strumenti forniti. La verifica prevede una prova orale, a cui si è ammessi superando una prova scritta, fatta nello stesso appello.

Se assenti alla prova orale, la prova scritta viene annullata.

La prova scritta prevede un test preliminare con cinque esercizi e la prova scritta effettiva con cinque esercizi.

Il test preliminare è basato sulla capacità di soluzione di equazioni e disequazioni; è superato se risultano corretti (con sviluppo formale e risultato numerico) tre esercizi su cinque.

Se il test preliminare non è superato la prova scritta non è superata.

La prova scritta effettiva comprende: uno studio di funzione (fino a 10 punti), la soluzione di un limite (fino a 5 punti), la soluzione di un integrale (fino a 5 punti), la soluzione di un sistema di equazioni lineari parametriche (fino a 5 punti), un esercizio sugli argomenti del programma (fino a 5 punti).

La prova scritta è superata se sono raggiunti 18 punti. Il punteggio è attribuito in base alla completezza ed alla chiarezza del procedimento, valutati i quali si considera il risultato numerico.

La prova orale valuta la conoscenza teorica degli argomenti del programma e la capacità di elaborare ed applicare gli strumenti matematici appresi; si basa sulle risposte ad un minimo di tre domande.

Il voto finale è una valutazione complessiva delle prove ed è fatta in base a: difficoltà degli argomenti, correttezza, completezza e chiarezza della loro esposizione.

Un prototipo di prova scritta con test preliminare sarà fornito durante il corso ed inserito fra i materiali integrativi. Non sono previste differenze fra studenti frequentanti e non frequentanti.

Lo studente, disabile e/o con DSA, che intende usufruire di un intervento individualizzato per lo svolgimento della prova d’esame deve contattare l'ufficio Integrazione Disabili dell'Università del Salento all'indirizzo paola.martino@unisalento.it

Consultare frequentemente la pagina web del docente per qualsiasi informazione, è aggiornata ad ogni evento o notizia utile. Quando si scrive una email al docente firmarla sempre, ed inserire il numero di matricola se si fanno richieste formali che possono richiederlo. Il docente non risponde ad email non firmate o con richiesta di informazioni reperibili sulla sua pagina web.

Conoscenze preliminari [testo a) cap.1]

  • Insiemi. Logica.
  • Relazioni. Funzioni. Equazioni. Operazioni e strutture.
  • Numeri naturali. Numeri interi. Numeri razionali. Numeri reali. Confronto tra numeri reali. Continuità del campo dei numeri reali. Potenza e radice ennesima di un numero reale. Il campo dei numeri reali. R “ampliamento” di Q. Rappresentazione geometrica dei numeri reali.

Lo spazio numerico R [testo b) cap.1]

  • Il campo dei numeri reali. Valore assoluto e distanza euclidea. Insiemi di numeri reali. Estremo superiore e inferiore di un insieme di numeri reali. Relazioni fra punto e insieme. Insiemi aperti. Insiemi chiusi. Complemento. Insiemi numerabili.

Funzioni in R [testo b) cap.2], [testo a) cap.5]

  • Definizioni. Rappresentazioni di una funzione. Funzione composta ed inversa. Proprietà di alcune funzioni. Grafici notevoli di funzioni elementari, disequazioni esponenziali e logaritmiche. Trasformazioni elementari del grafico di funzioni. Determinazione del dominio.

Limiti delle funzioni di una variabile [testo b) cap.3]

  • Introduzione al concetto di limite di una funzione. Limite finito di una funzione in un punto. Limite infinito di una funzione in un punto. Limite destro e limite sinistro di una funzione in un punto. Limiti di una funzione all'infinito. Definizione generale e unitaria di limite. Teoremi fondamentali sui limiti: unicità, permanenza del segno, confronto. Infinitesimi. Operazioni sui limiti. Forme indeterminate.

Funzioni continue [testo b) cap.4]

  • Definizioni. Continuità delle funzioni elementari. Funzioni continue in un intervallo chiuso e limitato. Continuità delle funzioni composte. Continuità delle funzioni inverse. Due limiti fondamentali. Limiti notevoli. Infinitesimi. Infiniti. Punti di discontinuità di una funzione.

Derivate [testo b) cap.5]

  • Introduzione al concetto di derivata. Derivata di una funzione in un punto. Calcolo della derivata in un punto. Continuità e derivabilità. Significato geometrico della derivata. Funzione derivata. Derivate di funzioni elementari. Teoremi sulle derivate. Derivata di una funzione composta. Derivata logaritmica. Derivata della funzione inversa. Tabelle di derivazione. Derivate di ordine superiore. Significati “economici”.

Calcolo differenziale [testo b) cap.6]

  • Teorema di teorema di Rolle. Teorema di Lagrange. Conseguenze del teorema di Lagrange. Teorema di Cauchy. Teorema di De L'Hospital e sue applicazioni.

Estremi. Studio di funzione [testo b) cap.7]

  • Introduzione. Massimi e minimi assoluti e relativi. Condizione necessaria per l'esistenza di estremi relativi (Teorema di Fermat). Condizioni sufficienti per l'esistenza di estremi relativi. Applicazioni all'Economia. Massimi e minimi assoluti. Convessità e concavità. Punti di flesso. Asintoti. Studio di una funzione.

Integrali indefiniti [testo b) cap.8]

  • Funzioni primitive. Integrale indefinito. Integrali indefiniti immediati. Proprietà dell'integrale indefinito.
  • Integrazione per scomposizione. Integrazione per sostituzione. Integrazione per parti. Integrazione di funzioni razionali fratte.

Integrale definito [testo b) cap.9]

  • Area del trapezoide. Integrale definito secondo Riemann. Proprietà dell'integrale definito (Teorema della media). Teorema fondamentale del calcolo integrale. Formula di Newton-Leibniz.
  • Integrale generalizzato per funzioni illimitate. Integrali estesi ad intervalli illimitati.

Calcolo combinatorio [testo a) cap.2]

  • Coefficienti binomiali, potenza ennesima di un binomio (formula di Newton)
  • Disposizioni, combinazioni e permutazioni semplici

Matrici e determinanti [testo b) cap.13]

  • Definizioni. Trasposta di una matrice. Somma tra matrici dello stesso tipo. Prodotto di una matrice per un numero. Prodotto tra matrici.
  • Definizione di determinante. Proprietà dei determinanti. Calcolo del determinante.
  • Matrice inversa di una matrice quadrata.
  • Rango di una matrice. Teorema di Kronecker. Matrici contenenti parametri.

Sistemi lineari [testo b) cap.14]

  • Sistemi di equazioni lineari. Sistemi di Cramer. Teorema di Rouchè-Capelli. Protocollo di risoluzione di sistemi di equazioni lineari non omogenei. Sistemi lineari omogenei. Sistemi di equazioni lineari con parametro.

Un qualsiasi testo universitario.

Testi di scuola superiore sono ammessi solo per gli esercizi. Per il materiale integrativo sarà fornito l’indirizzo web durante il corso.

 

Testi consigliati:

 

a) Bianchi M., Scaglianti L., Precorso di Matematica, ed. Cedam;

b) Torriero A., Scovenna M., Scaglianti L., Manuale di Matematica, ed. Cedam;

c) Scovenna M., Grassi R., Esercizi di Matematica, ed. Cedam.

Semestre
Primo Semestre (dal 16/09/2019 al 31/12/2019)

Tipo esame
Obbligatorio

Valutazione
Scritto e Orale Congiunti - Voto Finale

Orario dell'insegnamento
https://easyroom.unisalento.it/Orario

Insegnamento padre
MATEMATICA GENERALE (LB05)

Scarica scheda insegnamento (Apre una nuova finestra)