Claudio MELE

Claudio MELE

Professore II Fascia (Associato)

Settore Scientifico Disciplinare ING-IND/23: CHIMICA FISICA APPLICATA.

Dipartimento di Ingegneria dell'Innovazione

Edificio La Stecca - S.P. 6, Lecce - Monteroni - LECCE (LE)

Ufficio, Piano 1°

Telefono +39 0832 29 7269

Dipartimento di Ingegneria dell'Innovazione

Edificio La Stecca - S.P. 6, Lecce - Monteroni - LECCE (LE)

Laboratorio di Elettrochimica Applicata, Piano terra

Telefono +39 0832 29 7372

Dipartimento di Ingegneria dell'Innovazione

Edificio La Stecca - S.P. 6, Lecce - Monteroni - LECCE (LE)

Laboratorio di Spettroelettrochimica, Piano terra

Telefono +39 0832 29 7290

Professore II Fascia (Associato)

Area di competenza:

Chimica Fisica Applicata

Electrochemical Technologies

Orario di ricevimento

Lunedì dalle ore 11.30 alle ore 12.30.

Mercoledì dalle ore 12.30 alle ore 13.30.

Altri giorni, fissando un appuntamento a fine lezione o per e-mail.

Visualizza QR Code Scarica la Visit Card

Curriculum Vitae

Professore Associato di Chimica Fisica Applicata. Laurea in Ingegneria dei Materiali e Dottorato di Ricerca in Ingegneria dei Materiali presso l'Università di Lecce. Nel 2007 Premio per Dottori di Ricerca "Fondazione Oronzio e Niccolò De Nora" della Divisione di Elettrochimica della Società Chimica Italiana per la tesi di dottorato dal titolo: "In situ spectroelectrochemical investigations of metal and alloy electrodeposition and corrosion processes". Nel 2011 Premio Johnson Matthey Silver Metal dell'Institute of Metal Finishing (UK).

Attualmente docente dei corsi di "Electrochemical technologies" e di "Laboratorio di chimica fisica applicata" presso la Facoltà di Ingegneria dell’Università del Salento.

L'attività di ricerca è rivolta prevalentemente alla preparazione elettrochimica, allo studio mediante tecniche elettrochimiche e spettroelettrochimiche ed alla caratterizzazione cinetica, strutturale, composizionale, ottica, meccanica e corrosionistica di leghe, ossidi e compositi elettrodeposti. Sono state particolarmente approfondite le seguenti tematiche: (a) elettrodeposizione di metalli per l'elettronica; (b) fabbricazione e caratterizzazione funzionale di materiali per l'energetica: celle a combustibile (PEMFC e SOFC), supercapacitori e batterie metallo-aria; (c) fabbricazione e caratterizzazione funzionale di biomateriali metallici. I risultati dell'attività svolta sono illustrati in oltre 100 articoli pubblicati su riviste internazionali.

Didattica

A.A. 2023/2024

ELECTROCHEMICAL TECHNOLOGIES

Degree course MATERIALS ENGINEERING AND NANOTECHNOLOGY

Course type Laurea Magistrale

Language INGLESE

Credits 9.0

Teaching hours Ore totali di attività frontale: 81.0

Year taught 2023/2024

For matriculated on 2023/2024

Course year 1

Structure DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Subject matter Percorso comune

Location Lecce

LABORATORIO DI CHIMICA FISICA APPLICATA

Corso di laurea INGEGNERIA INDUSTRIALE

Tipo corso di studio Laurea

Lingua ITALIANO

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 54.0

Anno accademico di erogazione 2023/2024

Per immatricolati nel 2021/2022

Anno di corso 3

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso Curriculum materiali

Sede Lecce

A.A. 2022/2023

ELECTROCHEMICAL TECHNOLOGIES

Degree course MATERIALS ENGINEERING AND NANOTECHNOLOGY

Course type Laurea Magistrale

Language INGLESE

Credits 9.0

Teaching hours Ore totali di attività frontale: 81.0

Year taught 2022/2023

For matriculated on 2022/2023

Course year 1

Structure DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Subject matter PERCORSO COMUNE

Location Lecce

LABORATORIO DI CHIMICA FISICA APPLICATA

Corso di laurea INGEGNERIA INDUSTRIALE

Tipo corso di studio Laurea

Lingua ITALIANO

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 54.0

Anno accademico di erogazione 2022/2023

Per immatricolati nel 2020/2021

Anno di corso 3

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso Curriculum materiali

Sede Lecce

A.A. 2021/2022

ELECTROCHEMICAL TECHNOLOGIES

Degree course MATERIALS ENGINEERING AND NANOTECHNOLOGY

Course type Laurea Magistrale

Language INGLESE

Credits 9.0

Teaching hours Ore totali di attività frontale: 81.0

Year taught 2021/2022

For matriculated on 2021/2022

Course year 1

Structure DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Subject matter PERCORSO COMUNE

Location Lecce

LABORATORIO DI CHIMICA E FISICA APPLICATA

Corso di laurea INGEGNERIA INDUSTRIALE

Tipo corso di studio Laurea

Lingua ITALIANO

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 54.0

Anno accademico di erogazione 2021/2022

Per immatricolati nel 2019/2020

Anno di corso 3

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso Curriculum materiali

Sede Lecce

A.A. 2020/2021

ELECTROCHEMICAL TECHNOLOGIES

Degree course MATERIALS ENGINEERING AND NANOTECHNOLOGY

Course type Laurea Magistrale

Language INGLESE

Credits 9.0

Teaching hours Ore totali di attività frontale: 81.0

Year taught 2020/2021

For matriculated on 2020/2021

Course year 1

Structure DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Subject matter PERCORSO COMUNE

Location Lecce

LABORATORIO DI CHIMICA E FISICA APPLICATA

Corso di laurea INGEGNERIA INDUSTRIALE

Tipo corso di studio Laurea

Lingua ITALIANO

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 54.0

Anno accademico di erogazione 2020/2021

Per immatricolati nel 2018/2019

Anno di corso 3

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso Curriculum materiali

Sede Lecce

A.A. 2019/2020

ELECTROCHEMICAL TECHNOLOGIES

Degree course MATERIALS ENGINEERING AND NANOTECHNOLOGY

Course type Laurea Magistrale

Language INGLESE

Credits 9.0

Teaching hours Ore totali di attività frontale: 81.0

Year taught 2019/2020

For matriculated on 2019/2020

Course year 1

Structure DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Subject matter PERCORSO COMUNE

Location Lecce

LABORATORIO DI CHIMICA FISICA APPLICATA C.I

Corso di laurea INGEGNERIA INDUSTRIALE

Tipo corso di studio Laurea

Lingua ITALIANO

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 54.0

Anno accademico di erogazione 2019/2020

Per immatricolati nel 2017/2018

Anno di corso 3

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso Curriculum materiali

A.A. 2018/2019

ELECTROCHEMICAL TECHNOLOGIES

Degree course MATERIALS ENGINEERING AND NANOTECHNOLOGY

Course type Laurea Magistrale

Language INGLESE

Credits 9.0

Teaching hours Ore totali di attività frontale: 81.0

Year taught 2018/2019

For matriculated on 2018/2019

Course year 1

Structure DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Subject matter PERCORSO COMUNE

Location Lecce

Torna all'elenco
TECNOLOGIE ELETTROCHIMICHE

Corso di laurea INGEGNERIA BIOMEDICA

Settore Scientifico Disciplinare ING-IND/23

Tipo corso di studio Laurea Magistrale

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 54.0

Per immatricolati nel 2023/2024

Anno accademico di erogazione 2024/2025

Anno di corso 2

Semestre Primo Semestre (dal 16/09/2024 al 20/12/2024)

Lingua ITALIANO

Percorso INGEGNERIA TISSUTALE (A228)

Sede Lecce

TECNOLOGIE ELETTROCHIMICHE (ING-IND/23)
ELECTROCHEMICAL TECHNOLOGIES

Degree course MATERIALS ENGINEERING AND NANOTECHNOLOGY

Subject area ING-IND/23

Course type Laurea Magistrale

Credits 9.0

Teaching hours Ore totali di attività frontale: 81.0

For matriculated on 2023/2024

Year taught 2023/2024

Course year 1

Semestre Secondo Semestre (dal 04/03/2024 al 14/06/2024)

Language INGLESE

Subject matter Percorso comune (999)

Location Lecce

Prerequisite

Basic knowledge of calculus, physics and chemistry.

Contents

The course is focused on the fundamentals of electrochemistry and its technological applications, including corrosion, industrial electrochemical processes and electrochemical energy conversion and storage systems.

Learning outcomes

Knowledge and understanding

The aim of the course is to provide students with the fundamentals of electrochemistry and its technological applications, including corrosion, industrial electrochemical processes and electrochemical energy conversion and storage systems.

Applying knowledge and understanding

After the course, the students should:
- have acquired the skills necessary to address the broad theme of electrochemical technologies, discussing in particular the most important variables, both from a thermodynamic and kinetic point of view;
- have understood the mechanisms of charge transfer and be able to describe the structure of the electrochemical interface;
- have acquired the basic tools for understanding the corrosion of metallic materials in the different environments in which they can be used;
- be able to discuss the electrochemical processes applied to industrial production;
- have understood the electrochemical devices for electrochemical energy conversion and storage systems.

Making judgements

The course provides the ability to critically address electrochemical, corrosion and energy conversion and storage problems.

Communication

The course promotes the ability of the students to expose to experts their acquired scientific knowledge in precise and formal terms and to non-specialists by using elementary concepts.

Learning skills

Students are encouraged to acquire the critical skills to deal with typical theoretical and practical electrochemical problems. They should be able to expose their acquired knowledge summarizing notions from books and slides.

Teaching Methods

The course consists of frontal lessons using slides made available to students and classroom exercises. The frontal lessons are aimed at improving students' knowledge through the presentation of theories, models and methods. Numerical and practical exercises are aimed at a better understanding of the theory.

Examination

In the final exam (oral) the topics presented during the lectures will be addressed; the results obtained during the laboratory exercises will be discussed with the possibility to solve simple numerical exercises.

Office hours

Monday, 11.30-12.30;

Wednesday, 12.30-13.30;

other days, by appointment fixed by e-mail or at the end of the class.

Course Content

1. Fundamentals of electrochemistry                                                     (6 hours)

Fundamentals of electrochemistry. Ions, electrolytes and quantisation of the electrical charge. The nature of electrode reactions. Transition from electronic to ionic conductivity in an electrochemical cell.                        

2. The electrode-solution interface                                                          (6 hours)

The electrode-solution interface. The electrical double layer. Electrolysis cells and Galvanic cells.

3. Electrochemical thermodynamics                                                      (9 hours)

Electrochemical thermodynamics. Complex thermodynamic systems. Equilibrium in thermodynamic Systems. Thermodinamical potentials. Chemical work. Chemical potential. Unary and multicomponent, homogeneous and heterogeneous systems. Nonreacting and reacting systems. Conditions for equilibrium. Thermodinamics of surfaces. Surface tension. The equilibrium shape of crystals. Adsorption at surfaces. Electrode potential and thermodynamics. Electrochemical potential. Electrocapillary equation.                             

4. Electrochemical kinetics                                                                       (9 hours)

Electrochemical kinetics. Kinetics aspects of the corrosion. Overpotential. Activation, concentration and ohmic overpotentials. Butler-Volmer equation. Tafel equation. Limit current. Mass transfer and current distribution in electrochemical systems. Transport in electrolytic solutions. Primary and secondary current distribution.

5. Corrosion                                                                                                 (9 hours)              

Fundamentals aspects of corrosion of metallic materials. Uniform and localized corrosion. Faraday laws. Electrochemical mechanism of the corrosion. Anodic and cathodic reactions. Thermodynamics aspects of the corrosion. Nernst equation. Stability diagram for water. Applications of the Nernst Equation. Cell potentials and concentrations. Concentration cells. Pourbaix Diagrams. Corrosion, passivation and immunity regions. Passivation and passivity of metals. Active-passive metals. Principles of galvanic corrosion. Evans Diagrams. Corrosion prevention and protection methods.                                     

6. Industrial electrochemical processes.                                                 (6 hours)

Electrodeposition, electroforming, electrorefining.                                                                   

7. Electrochemical energy conversion and storage systems            (6 hours)

Electrochemical energy conversion and storage systems. Primary and secondary batteries. Electrochemical reactions. Storage capacity. Energy density. Power density. Fuel cells. Electrochemical supercapacitors.

8. Techniques for the study of electrochemical interfaces (6 hours)                              

Electrochemical methods for the study of the electrode/electrolyte interface. Quasi-stationary methods. Two electrode and three electrode systems.

Numerical exercises

9. Corrosion                                                                                                  (6 hours)

10. Electrochemical energy conversion and storage systems       (6 hours)

Laboratory exercises

11. Electrochemical techniques                                                                (6 hours)              

Electrochemical techniques. The potentiostat. Current-potential curves. Quasi-stationary methods. Cyclic voltammetry.    

12. Spectroelectrochemical techniques                                                  (6 hours)              

Spectroelectrochemical techniques. Infrared spectroscopy. Raman spectroscopy. Spectroellipsometry

Textbooks

[1] C.H. Hamann, A. Hamnett, V. Vielstich - Electrochemistry

[2] V. S. Bagotsky - Fundamentals of Electrochemistry

[3] A.J. Bard, L.R. Faulkner - Electrochemical Methods: Fundamentals and Applications

[4] P. Pedeferri - Corrosione e protezione dei materiali metallici

ELECTROCHEMICAL TECHNOLOGIES (ING-IND/23)
LABORATORIO DI CHIMICA FISICA APPLICATA

Corso di laurea INGEGNERIA INDUSTRIALE

Settore Scientifico Disciplinare ING-IND/23

Tipo corso di studio Laurea

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 54.0

Per immatricolati nel 2021/2022

Anno accademico di erogazione 2023/2024

Anno di corso 3

Semestre Secondo Semestre (dal 04/03/2024 al 14/06/2024)

Lingua ITALIANO

Percorso Curriculum materiali (A92)

Sede Lecce

Conoscenze di base di chimica e fisica

Il corso intende fornire agli studenti conoscenze che riguardano aspetti termodinamici e cinetici relativi a sistemi complessi e superfici, a batterie e sistemi elettrochimici di accumulo e a processi di corrosione ed elettrodeposizione. Ampia parte del corso verrà dedicata ad esperienze di laboratorio con l’esecuzione di prove descritte durante le lezioni frontali, l’individuazione dei parametri di prova e l’analisi dei risultati.

Conoscenza e comprensione.

Gli studenti acquisiranno le competenze per analizzare gli aspetti chimico-fisici di sistemi termodinamici complessi. Inoltre, acquisiranno dimestichezza con l’impiego di tecniche elettrochimiche e spettroelettrochimiche per la caratterizzazione di materiali metallici impiegati in batterie e sistemi elettrochimici di accumulo e di materiali metallici coinvolti in processi di corrosione ed elettrodeposizione.

 

Capacità di applicare conoscenza e comprensione

Le competenze acquisite permetteranno agli studenti di identificare le tecniche elettrochimiche e spettroelettrochimiche opportune per caratterizzare materiali metallici impiegati in batterie o coinvolti in problemi di corrosione.

 

Autonomia di giudizio.

Al termine del corso, gli studenti acquisiranno le adeguate capacità per raccogliere, organizzare ed analizzare i dati sperimentali ottenuti con gli strumenti impiegati ed a formulare giudizi autonomi.

 

Abilità comunicative.

Gli studenti saranno in grado di comunicare, anche attraverso relazioni, le tecniche impiegate ed i risultati delle analisi effettuate.

 

Capacità di apprendimento.

Al termine del corso, ci si aspetta che gli studenti abbiano sviluppato le adeguate conoscenze e competenze nel campo della chimica fisica applicata alla caratterizzazione di materiali metallici impiegati in batterie e sistemi elettrochimici di accumulo e di materiali metallici coinvolti in processi di corrosione ed elettrodeposizione. Tali competenze e conoscenze saranno utili al prosieguo del loro percorso di studi magistrali nell’area Industriale con un elevato grado di autonomia.

Lezioni frontali, esercitazioni numeriche e di laboratorio.

L’esame finale consiste in una prova scritta sulle nozioni teoriche e nella discussione di una presentazione e di una relazione preparate dallo studente, relative all'approfondimento di un argomento trattato durante l’attività di laboratorio e/o durante le lezioni frontali.

Orario di ricevimento:

lunedì 11.30-12.30;

mercoledì 12.30-13.30;

altri giorni per appuntamento fissato tramite e-mail o al termine delle lezioni.

- Termodinamica dei sistemi complessi e delle superfici. Teoria ed esercitazioni di laboratorio relative agli equilibri termodinamici di interesse per l'ingegneria. Teoria ed esercitazione di laboratorio sulla tensione superficiale.

- Cenni di cinetica chimica. Teoria ed esercitazioni numeriche e di laboratorio di cinetica e di reattoristica chimica.

- Chimica fisica dei sistemi elettrochimici. Teoria ed esercitazioni di laboratorio su misure potenziostatiche, potenziodinamiche, galvanostatiche, galvanodinamiche. Teoria ed esercitazioni di laboratorio di spettroscopia applicata all'elettrochimica.

- Batterie e sistemi di accumulo. Principi di funzionamento di una batteria. Componenti di celle e batterie. Realizzazione pratica di una pila. Esercitazioni numeriche e di laboratorio su batterie primarie e batterie ricaricabili, celle a combustibile e supercapacitori.

- Aspetti chimico-fisici e cinetici dei processi di corrosione ed elettrodeposizione. Esercitazioni numeriche e di laboratorio relative ad aspetti stechiometrici, termodinamici e cinetici dei processi di corrosione ed elettrodeposizione

R.T. Dehoff - Thermodynamics in Material Science

F.R. Foulkes - Physical Chemistry for Engineering and Applied Science

S. Carrà, M. Morbidelli - Chimica Fisica Applicata

P.W. Atkins – Chimica Fisica

Materiale didattico fornito dal docente

LABORATORIO DI CHIMICA FISICA APPLICATA (ING-IND/23)
ELECTROCHEMICAL TECHNOLOGIES

Degree course MATERIALS ENGINEERING AND NANOTECHNOLOGY

Subject area ING-IND/23

Course type Laurea Magistrale

Credits 9.0

Teaching hours Ore totali di attività frontale: 81.0

For matriculated on 2022/2023

Year taught 2022/2023

Course year 1

Semestre Secondo Semestre (dal 01/03/2023 al 09/06/2023)

Language INGLESE

Subject matter PERCORSO COMUNE (999)

Location Lecce

Prerequisite

Basic knowledge of calculus, physics and chemistry.

Contents

The course is focused on the fundamentals of electrochemistry and its technological applications, including corrosion, industrial electrochemical processes and electrochemical energy conversion and storage systems.

Learning outcomes

Knowledge and understanding

The aim of the course is to provide students with the fundamentals of electrochemistry and its technological applications, including corrosion, industrial electrochemical processes and electrochemical energy conversion and storage systems.

Applying knowledge and understanding

After the course, the students should:
- have acquired the skills necessary to address the broad theme of electrochemical technologies, discussing in particular the most important variables, both from a thermodynamic and kinetic point of view;
- have understood the mechanisms of charge transfer and be able to describe the structure of the electrochemical interface;
- have acquired the basic tools for understanding the corrosion of metallic materials in the different environments in which they can be used;
- be able to discuss the electrochemical processes applied to industrial production;
- have understood the electrochemical devices for electrochemical energy conversion and storage systems.

Making judgements

The course provides the ability to critically address electrochemical, corrosion and energy conversion and storage problems.

Communication

The course promotes the ability of the students to expose to experts their acquired scientific knowledge in precise and formal terms and to non-specialists by using elementary concepts.

Learning skills

Students are encouraged to acquire the critical skills to deal with typical theoretical and practical electrochemical problems. They should be able to expose their acquired knowledge summarizing notions from books and slides.

Teaching Methods

The course consists of frontal lessons using slides made available to students and classroom exercises. The frontal lessons are aimed at improving students' knowledge through the presentation of theories, models and methods. Numerical and practical exercises are aimed at a better understanding of the theory.

Examination

In the final exam (oral) the topics presented during the lectures will be addressed; the results obtained during the laboratory exercises will be discussed with the possibility to solve simple numerical exercises.

Office hours

Monday, 11.30-12.30;

Wednesday, 12.30-13.30;

other days, by appointment fixed by e-mail or at the end of the class.

Course Content

1. Fundamentals of electrochemistry                                                     (6 hours)

Fundamentals of electrochemistry. Ions, electrolytes and quantisation of the electrical charge. The nature of electrode reactions. Transition from electronic to ionic conductivity in an electrochemical cell.                        

2. The electrode-solution interface                                                          (6 hours)

The electrode-solution interface. The electrical double layer. Electrolysis cells and Galvanic cells.

3. Electrochemical thermodynamics                                                      (9 hours)

Electrochemical thermodynamics. Complex thermodynamic systems. Equilibrium in thermodynamic Systems. Thermodinamical potentials. Chemical work. Chemical potential. Unary and multicomponent, homogeneous and heterogeneous systems. Nonreacting and reacting systems. Conditions for equilibrium. Thermodinamics of surfaces. Surface tension. The equilibrium shape of crystals. Adsorption at surfaces. Electrode potential and thermodynamics. Electrochemical potential. Electrocapillary equation.                             

4. Electrochemical kinetics                                                                       (9 hours)

Electrochemical kinetics. Kinetics aspects of the corrosion. Overpotential. Activation, concentration and ohmic overpotentials. Butler-Volmer equation. Tafel equation. Limit current. Mass transfer and current distribution in electrochemical systems. Transport in electrolytic solutions. Primary and secondary current distribution.

5. Corrosion                                                                                                 (9 hours)              

Fundamentals aspects of corrosion of metallic materials. Uniform and localized corrosion. Faraday laws. Electrochemical mechanism of the corrosion. Anodic and cathodic reactions. Thermodynamics aspects of the corrosion. Nernst equation. Stability diagram for water. Applications of the Nernst Equation. Cell potentials and concentrations. Concentration cells. Pourbaix Diagrams. Corrosion, passivation and immunity regions. Passivation and passivity of metals. Active-passive metals. Principles of galvanic corrosion. Evans Diagrams. Corrosion prevention and protection methods.                                     

6. Industrial electrochemical processes.                                                 (6 hours)

Electrodeposition, electroforming, electrorefining.                                                                   

7. Electrochemical energy conversion and storage systems            (6 hours)

Electrochemical energy conversion and storage systems. Primary and secondary batteries. Electrochemical reactions. Storage capacity. Energy density. Power density. Fuel cells. Electrochemical supercapacitors.

8. Techniques for the study of electrochemical interfaces (6 hours)                              

Electrochemical methods for the study of the electrode/electrolyte interface. Quasi-stationary methods. Two electrode and three electrode systems.

Numerical exercises

9. Corrosion                                                                                                  (6 hours)

10. Electrochemical energy conversion and storage systems       (6 hours)

Laboratory exercises

11. Electrochemical techniques                                                                (6 hours)              

Electrochemical techniques. The potentiostat. Current-potential curves. Quasi-stationary methods. Cyclic voltammetry.    

12. Spectroelectrochemical techniques                                                  (6 hours)              

Spectroelectrochemical techniques. Infrared spectroscopy. Raman spectroscopy. Spectroellipsometry

Textbooks

[1] C.H. Hamann, A. Hamnett, V. Vielstich - Electrochemistry

[2] V. S. Bagotsky - Fundamentals of Electrochemistry

[3] A.J. Bard, L.R. Faulkner - Electrochemical Methods: Fundamentals and Applications

[4] P. Pedeferri - Corrosione e protezione dei materiali metallici

ELECTROCHEMICAL TECHNOLOGIES (ING-IND/23)
LABORATORIO DI CHIMICA FISICA APPLICATA

Corso di laurea INGEGNERIA INDUSTRIALE

Settore Scientifico Disciplinare ING-IND/23

Tipo corso di studio Laurea

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 54.0

Per immatricolati nel 2020/2021

Anno accademico di erogazione 2022/2023

Anno di corso 3

Semestre Secondo Semestre (dal 01/03/2023 al 09/06/2023)

Lingua ITALIANO

Percorso Curriculum materiali (A92)

Sede Lecce

Conoscenze di base di chimica e fisica

Il corso intende fornire agli studenti conoscenze che riguardano aspetti termodinamici e cinetici relativi a sistemi complessi e superfici, a batterie e sistemi elettrochimici di accumulo e a processi di corrosione ed elettrodeposizione. Ampia parte del corso verrà dedicata ad esperienze di laboratorio con l’esecuzione di prove descritte durante le lezioni frontali, l’individuazione dei parametri di prova e l’analisi dei risultati.

Conoscenza e comprensione.

Gli studenti acquisiranno le competenze per analizzare gli aspetti chimico-fisici di sistemi termodinamici complessi. Inoltre, acquisiranno dimestichezza con l’impiego di tecniche elettrochimiche e spettroelettrochimiche per la caratterizzazione di materiali metallici impiegati in batterie e sistemi elettrochimici di accumulo e di materiali metallici coinvolti in processi di corrosione ed elettrodeposizione.

 

Capacità di applicare conoscenza e comprensione

Le competenze acquisite permetteranno agli studenti di identificare le tecniche elettrochimiche e spettroelettrochimiche opportune per caratterizzare materiali metallici impiegati in batterie o coinvolti in problemi di corrosione.

 

Autonomia di giudizio.

Al termine del corso, gli studenti acquisiranno le adeguate capacità per raccogliere, organizzare ed analizzare i dati sperimentali ottenuti con gli strumenti impiegati ed a formulare giudizi autonomi.

 

Abilità comunicative.

Gli studenti saranno in grado di comunicare, anche attraverso relazioni, le tecniche impiegate ed i risultati delle analisi effettuate.

 

Capacità di apprendimento.

Al termine del corso, ci si aspetta che gli studenti abbiano sviluppato le adeguate conoscenze e competenze nel campo della chimica fisica applicata alla caratterizzazione di materiali metallici impiegati in batterie e sistemi elettrochimici di accumulo e di materiali metallici coinvolti in processi di corrosione ed elettrodeposizione. Tali competenze e conoscenze saranno utili al prosieguo del loro percorso di studi magistrali nell’area Industriale con un elevato grado di autonomia.

Lezioni frontali, esercitazioni numeriche e di laboratorio.

L’esame finale consiste in una prova scritta sulle nozioni teoriche e nella discussione di una presentazione e di una relazione preparate dallo studente, relative all'approfondimento di un argomento trattato durante l’attività di laboratorio e/o durante le lezioni frontali.

Orario di ricevimento:

lunedì 11.30-12.30;

mercoledì 12.30-13.30;

altri giorni per appuntamento fissato tramite e-mail o al termine delle lezioni.

- Termodinamica dei sistemi complessi e delle superfici. Teoria ed esercitazioni di laboratorio relative agli equilibri termodinamici di interesse per l'ingegneria. Teoria ed esercitazione di laboratorio sulla tensione superficiale.

- Cenni di cinetica chimica. Teoria ed esercitazioni numeriche e di laboratorio di cinetica e di reattoristica chimica.

- Chimica fisica dei sistemi elettrochimici. Teoria ed esercitazioni di laboratorio su misure potenziostatiche, potenziodinamiche, galvanostatiche, galvanodinamiche. Teoria ed esercitazioni di laboratorio di spettroscopia applicata all'elettrochimica.

- Batterie e sistemi di accumulo. Principi di funzionamento di una batteria. Componenti di celle e batterie. Realizzazione pratica di una pila. Esercitazioni numeriche e di laboratorio su batterie primarie e batterie ricaricabili, celle a combustibile e supercapacitori.

- Aspetti chimico-fisici e cinetici dei processi di corrosione ed elettrodeposizione. Esercitazioni numeriche e di laboratorio relative ad aspetti stechiometrici, termodinamici e cinetici dei processi di corrosione ed elettrodeposizione

R.T. Dehoff - Thermodynamics in Material Science

F.R. Foulkes - Physical Chemistry for Engineering and Applied Science

S. Carrà, M. Morbidelli - Chimica Fisica Applicata

P.W. Atkins – Chimica Fisica

Materiale didattico fornito dal docente

LABORATORIO DI CHIMICA FISICA APPLICATA (ING-IND/23)
ELECTROCHEMICAL TECHNOLOGIES

Degree course MATERIALS ENGINEERING AND NANOTECHNOLOGY

Subject area ING-IND/23

Course type Laurea Magistrale

Credits 9.0

Teaching hours Ore totali di attività frontale: 81.0

For matriculated on 2021/2022

Year taught 2021/2022

Course year 1

Semestre Secondo Semestre (dal 01/03/2022 al 10/06/2022)

Language INGLESE

Subject matter PERCORSO COMUNE (999)

Location Lecce

Prerequisite

Basic knowledge of calculus, physics and chemistry.

Contents

The course is focused on the fundamentals of electrochemistry and its technological applications, including corrosion, industrial electrochemical processes and electrochemical energy conversion and storage systems.

Learning outcomes

Knowledge and understanding

The aim of the course is to provide students with the fundamentals of electrochemistry and its technological applications, including corrosion, industrial electrochemical processes and electrochemical energy conversion and storage systems.

Applying knowledge and understanding

After the course, the students should:
- have acquired the skills necessary to address the broad theme of electrochemical technologies, discussing in particular the most important variables, both from a thermodynamic and kinetic point of view;
- have understood the mechanisms of charge transfer and be able to describe the structure of the electrochemical interface;
- have acquired the basic tools for understanding the corrosion of metallic materials in the different environments in which they can be used;
- be able to discuss the electrochemical processes applied to industrial production;
- have understood the electrochemical devices for electrochemical energy conversion and storage systems.

Making judgements

The course provides the ability to critically address electrochemical, corrosion and energy conversion and storage problems.

Communication

The course promotes the ability of the students to expose to experts their acquired scientific knowledge in precise and formal terms and to non-specialists by using elementary concepts.

Learning skills

Students are encouraged to acquire the critical skills to deal with typical theoretical and practical electrochemical problems. They should be able to expose their acquired knowledge summarizing notions from books and slides.

Teaching Methods

The course consists of frontal lessons using slides made available to students and classroom exercises. The frontal lessons are aimed at improving students' knowledge through the presentation of theories, models and methods. Numerical and practical exercises are aimed at a better understanding of the theory.

Examination

In the final exam (oral) the topics presented during the lectures will be addressed; the results obtained during the laboratory exercises will be discussed with the possibility to solve simple numerical exercises.

Office hours

Wednesday, 11.30-13.30;

other days, by appointment fixed by e-mail or at the end of the class.

Course Content

1. Fundamentals of electrochemistry                                                     (6 hours)

Fundamentals of electrochemistry. Ions, electrolytes and quantisation of the electrical charge. The nature of electrode reactions. Transition from electronic to ionic conductivity in an electrochemical cell.                        

2. The electrode-solution interface                                                          (6 hours)

The electrode-solution interface. The electrical double layer. Electrolysis cells and Galvanic cells.

3. Electrochemical thermodynamics                                                      (9 hours)

Electrochemical thermodynamics. Complex thermodynamic systems. Equilibrium in thermodynamic Systems. Thermodinamical potentials. Chemical work. Chemical potential. Unary and multicomponent, homogeneous and heterogeneous systems. Nonreacting and reacting systems. Conditions for equilibrium. Thermodinamics of surfaces. Surface tension. The equilibrium shape of crystals. Adsorption at surfaces. Electrode potential and thermodynamics. Electrochemical potential. Electrocapillary equation.                             

4. Electrochemical kinetics                                                                       (9 hours)

Electrochemical kinetics. Kinetics aspects of the corrosion. Overpotential. Activation, concentration and ohmic overpotentials. Butler-Volmer equation. Tafel equation. Limit current. Mass transfer and current distribution in electrochemical systems. Transport in electrolytic solutions. Primary and secondary current distribution.

5. Corrosion                                                                                                 (9 hours)              

Fundamentals aspects of corrosion of metallic materials. Uniform and localized corrosion. Faraday laws. Electrochemical mechanism of the corrosion. Anodic and cathodic reactions. Thermodynamics aspects of the corrosion. Nernst equation. Stability diagram for water. Applications of the Nernst Equation. Cell potentials and concentrations. Concentration cells. Pourbaix Diagrams. Corrosion, passivation and immunity regions. Passivation and passivity of metals. Active-passive metals. Principles of galvanic corrosion. Evans Diagrams. Corrosion prevention and protection methods.                                     

6. Industrial electrochemical processes.                                                 (6 hours)

Electrodeposition, electroforming, electrorefining.                                                                   

7. Electrochemical energy conversion and storage systems            (6 hours)

Electrochemical energy conversion and storage systems. Primary and secondary batteries. Electrochemical reactions. Storage capacity. Energy density. Power density. Fuel cells. Electrochemical supercapacitors.

8. Techniques for the study of electrochemical interfaces (6 hours)                              

Electrochemical methods for the study of the electrode/electrolyte interface. Quasi-stationary methods. Two electrode and three electrode systems.

Numerical exercises

9. Corrosion                                                                                                  (6 hours)

10. Electrochemical energy conversion and storage systems       (6 hours)

Laboratory exercises

11. Electrochemical techniques                                                                (6 hours)              

Electrochemical techniques. The potentiostat. Current-potential curves. Quasi-stationary methods. Cyclic voltammetry.    

12. Spectroelectrochemical techniques                                                  (6 hours)              

Spectroelectrochemical techniques. Infrared spectroscopy. Raman spectroscopy. Spectroellipsometry

Textbooks

[1] C.H. Hamann, A. Hamnett, V. Vielstich - Electrochemistry

[2] V. S. Bagotsky - Fundamentals of Electrochemistry

[3] A.J. Bard, L.R. Faulkner - Electrochemical Methods: Fundamentals and Applications

[4] P. Pedeferri - Corrosione e protezione dei materiali metallici

ELECTROCHEMICAL TECHNOLOGIES (ING-IND/23)
LABORATORIO DI CHIMICA E FISICA APPLICATA

Corso di laurea INGEGNERIA INDUSTRIALE

Settore Scientifico Disciplinare ING-IND/23

Tipo corso di studio Laurea

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 54.0

Per immatricolati nel 2019/2020

Anno accademico di erogazione 2021/2022

Anno di corso 3

Semestre Secondo Semestre (dal 01/03/2022 al 10/06/2022)

Lingua ITALIANO

Percorso Curriculum materiali (A92)

Sede Lecce

Conoscenze di base di chimica e fisica

Il corso intende fornire agli studenti conoscenze che riguardano aspetti termodinamici e cinetici relativi a sistemi complessi e superfici, a batterie e sistemi elettrochimici di accumulo e a processi di corrosione ed elettrodeposizione. Ampia parte del corso verrà dedicata ad esperienze di laboratorio con l’esecuzione di prove descritte durante le lezioni frontali, l’individuazione dei parametri di prova e l’analisi dei risultati.

Conoscenza e comprensione.

Gli studenti acquisiranno le competenze per analizzare gli aspetti chimico-fisici di sistemi termodinamici complessi. Inoltre, acquisiranno dimestichezza con l’impiego di tecniche elettrochimiche e spettroelettrochimiche per la caratterizzazione di materiali metallici impiegati in batterie e sistemi elettrochimici di accumulo e di materiali metallici coinvolti in processi di corrosione ed elettrodeposizione.

 

Capacità di applicare conoscenza e comprensione

Le competenze acquisite permetteranno agli studenti di identificare le tecniche elettrochimiche e spettroelettrochimiche opportune per caratterizzare materiali metallici impiegati in batterie o coinvolti in problemi di corrosione.

 

Autonomia di giudizio.

Al termine del corso, gli studenti acquisiranno le adeguate capacità per raccogliere, organizzare ed analizzare i dati sperimentali ottenuti con gli strumenti impiegati ed a formulare giudizi autonomi.

 

Abilità comunicative.

Gli studenti saranno in grado di comunicare, anche attraverso relazioni, le tecniche impiegate ed i risultati delle analisi effettuate.

 

Capacità di apprendimento.

Al termine del corso, ci si aspetta che gli studenti abbiano sviluppato le adeguate conoscenze e competenze nel campo della chimica fisica applicata alla caratterizzazione di materiali metallici impiegati in batterie e sistemi elettrochimici di accumulo e di materiali metallici coinvolti in processi di corrosione ed elettrodeposizione. Tali competenze e conoscenze saranno utili al prosieguo del loro percorso di studi magistrali nell’area Industriale con un elevato grado di autonomia.

Lezioni frontali, esercitazioni numeriche e di laboratorio.

L’esame finale orale consiste nella discussione di una relazione preparata dallo studente, relativa all'approfondimento di un argomento trattato durante l’attività di laboratorio e/o durante le lezioni frontali.

Orario di ricevimento:

lunedì 11.30-12.30;

mercoledì 12.30-13.30;

altri giorni per appuntamento fissato tramite e-mail o al termine delle lezioni.

- Termodinamica dei sistemi complessi e delle superfici. Teoria ed esercitazioni di laboratorio relative agli equilibri termodinamici di interesse per l'ingegneria. Teoria ed esercitazione di laboratorio sulla tensione superficiale.

- Cenni di cinetica chimica. Teoria ed esercitazioni numeriche e di laboratorio di cinetica e di reattoristica chimica.

- Chimica fisica dei sistemi elettrochimici. Teoria ed esercitazioni di laboratorio su misure potenziostatiche, potenziodinamiche, galvanostatiche, galvanodinamiche. Teoria ed esercitazioni di laboratorio di spettroscopia applicata all'elettrochimica.

- Batterie e sistemi di accumulo. Principi di funzionamento di una batteria. Componenti di celle e batterie. Realizzazione pratica di una pila. Esercitazioni numeriche e di laboratorio su batterie primarie e batterie ricaricabili, celle a combustibile e supercapacitori.

- Aspetti chimico-fisici e cinetici dei processi di corrosione ed elettrodeposizione. Esercitazioni numeriche e di laboratorio relative ad aspetti stechiometrici, termodinamici e cinetici dei processi di corrosione ed elettrodeposizione

R.T. Dehoff - Thermodynamics in Material Science

F.R. Foulkes - Physical Chemistry for Engineering and Applied Science

S. Carrà, M. Morbidelli - Chimica Fisica Applicata

P.W. Atkins – Chimica Fisica

Materiale didattico fornito dal docente

LABORATORIO DI CHIMICA E FISICA APPLICATA (ING-IND/23)
ELECTROCHEMICAL TECHNOLOGIES

Degree course MATERIALS ENGINEERING AND NANOTECHNOLOGY

Subject area ING-IND/23

Course type Laurea Magistrale

Credits 9.0

Teaching hours Ore totali di attività frontale: 81.0

For matriculated on 2020/2021

Year taught 2020/2021

Course year 1

Semestre Secondo Semestre (dal 01/03/2021 al 11/06/2021)

Language INGLESE

Subject matter PERCORSO COMUNE (999)

Location Lecce

Prerequisite

Basic knowledge of calculus, physics and chemistry.

Contents

The course is focused on the fundamentals of electrochemistry and its technological applications, including corrosion, industrial electrochemical processes and electrochemical energy conversion and storage systems.

Learning outcomes

Knowledge and understanding

The aim of the course is to provide students with the fundamentals of electrochemistry and its technological applications, including corrosion, industrial electrochemical processes and electrochemical energy conversion and storage systems.

Applying knowledge and understanding

After the course, the students should:
- have acquired the skills necessary to address the broad theme of electrochemical technologies, discussing in particular the most important variables, both from a thermodynamic and kinetic point of view;
- have understood the mechanisms of charge transfer and be able to describe the structure of the electrochemical interface;
- have acquired the basic tools for understanding the corrosion of metallic materials in the different environments in which they can be used;
- be able to discuss the electrochemical processes applied to industrial production;
- have understood the electrochemical devices for electrochemical energy conversion and storage systems.

Making judgements

The course provides the ability to critically address electrochemical, corrosion and energy conversion and storage problems.

Communication

The course promotes the ability of the students to expose to experts their acquired scientific knowledge in precise and formal terms and to non-specialists by using elementary concepts.

Learning skills

Students are encouraged to acquire the critical skills to deal with typical theoretical and practical electrochemical problems. They should be able to expose their acquired knowledge summarizing notions from books and slides.

Teaching Methods

The course consists of frontal lessons using slides made available to students and classroom exercises. The frontal lessons are aimed at improving students' knowledge through the presentation of theories, models and methods. Numerical and practical exercises are aimed at a better understanding of the theory.

Examination

In the final exam (oral) the topics presented during the lectures will be addressed; the results obtained during the laboratory exercises will be discussed with the possibility to solve simple numerical exercises.

Office hours

Wednesday, 11.30-13.30;

other days, by appointment fixed by e-mail or at the end of the class.

Course Content

1. Fundamentals of electrochemistry                                                     (6 hours)

Fundamentals of electrochemistry. Ions, electrolytes and quantisation of the electrical charge. The nature of electrode reactions. Transition from electronic to ionic conductivity in an electrochemical cell.                        

2. The electrode-solution interface                                                          (6 hours)

The electrode-solution interface. The electrical double layer. Electrolysis cells and Galvanic cells.

3. Electrochemical thermodynamics                                                      (9 hours)

Electrochemical thermodynamics. Complex thermodynamic systems. Equilibrium in thermodynamic Systems. Thermodinamical potentials. Chemical work. Chemical potential. Unary and multicomponent, homogeneous and heterogeneous systems. Nonreacting and reacting systems. Conditions for equilibrium. Thermodinamics of surfaces. Surface tension. The equilibrium shape of crystals. Adsorption at surfaces. Electrode potential and thermodynamics. Electrochemical potential. Electrocapillary equation.                             

4. Electrochemical kinetics                                                                       (9 hours)

Electrochemical kinetics. Kinetics aspects of the corrosion. Overpotential. Activation, concentration and ohmic overpotentials. Butler-Volmer equation. Tafel equation. Limit current. Mass transfer and current distribution in electrochemical systems. Transport in electrolytic solutions. Primary and secondary current distribution.

5. Corrosion                                                                                                 (9 hours)              

Fundamentals aspects of corrosion of metallic materials. Uniform and localized corrosion. Faraday laws. Electrochemical mechanism of the corrosion. Anodic and cathodic reactions. Thermodynamics aspects of the corrosion. Nernst equation. Stability diagram for water. Applications of the Nernst Equation. Cell potentials and concentrations. Concentration cells. Pourbaix Diagrams. Corrosion, passivation and immunity regions. Passivation and passivity of metals. Active-passive metals. Principles of galvanic corrosion. Evans Diagrams. Corrosion prevention and protection methods.                                     

6. Industrial electrochemical processes.                                                 (6 hours)

Electrodeposition, electroforming, electrorefining.                                                                   

7. Electrochemical energy conversion and storage systems            (6 hours)

Electrochemical energy conversion and storage systems. Primary and secondary batteries. Electrochemical reactions. Storage capacity. Energy density. Power density. Fuel cells. Electrochemical supercapacitors.

8. Techniques for the study of electrochemical interfaces (6 hours)                              

Electrochemical methods for the study of the electrode/electrolyte interface. Quasi-stationary methods. Two electrode and three electrode systems.

Numerical exercises

9. Corrosion                                                                                                  (6 hours)

10. Electrochemical energy conversion and storage systems       (6 hours)

Laboratory exercises

11. Electrochemical techniques                                                                (6 hours)              

Electrochemical techniques. The potentiostat. Current-potential curves. Quasi-stationary methods. Cyclic voltammetry.    

12. Spectroelectrochemical techniques                                                  (6 hours)              

Spectroelectrochemical techniques. Infrared spectroscopy. Raman spectroscopy. Spectroellipsometry

Textbooks

[1] C.H. Hamann, A. Hamnett, V. Vielstich - Electrochemistry

[2] V. S. Bagotsky - Fundamentals of Electrochemistry

[3] A.J. Bard, L.R. Faulkner - Electrochemical Methods: Fundamentals and Applications

[4] P. Pedeferri - Corrosione e protezione dei materiali metallici

ELECTROCHEMICAL TECHNOLOGIES (ING-IND/23)
LABORATORIO DI CHIMICA E FISICA APPLICATA

Corso di laurea INGEGNERIA INDUSTRIALE

Settore Scientifico Disciplinare ING-IND/23

Tipo corso di studio Laurea

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 54.0

Per immatricolati nel 2018/2019

Anno accademico di erogazione 2020/2021

Anno di corso 3

Semestre Secondo Semestre (dal 01/03/2021 al 11/06/2021)

Lingua ITALIANO

Percorso Curriculum materiali (A92)

Sede Lecce

Conoscenze di base di chimica e fisica

Il corso intende fornire agli studenti conoscenze che riguardano aspetti termodinamici e cinetici relativi a sistemi complessi e superfici, a batterie e sistemi elettrochimici di accumulo e a processi di corrosione ed elettrodeposizione. Ampia parte del corso verrà dedicata ad esperienze di laboratorio con l’esecuzione di prove descritte durante le lezioni frontali, l’individuazione dei parametri di prova e l’analisi dei risultati.

Conoscenza e comprensione.

Gli studenti acquisiranno le competenze per analizzare gli aspetti chimico-fisici di sistemi termodinamici complessi. Inoltre, acquisiranno dimestichezza con l’impiego di tecniche elettrochimiche e spettroelettrochimiche per la caratterizzazione di materiali metallici impiegati in batterie e sistemi elettrochimici di accumulo e di materiali metallici coinvolti in processi di corrosione ed elettrodeposizione.

 

Capacità di applicare conoscenza e comprensione

Le competenze acquisite permetteranno agli studenti di identificare le tecniche elettrochimiche e spettroelettrochimiche opportune per caratterizzare materiali metallici impiegati in batterie o coinvolti in problemi di corrosione.

 

Autonomia di giudizio.

Al termine del corso, gli studenti acquisiranno le adeguate capacità per raccogliere, organizzare ed analizzare i dati sperimentali ottenuti con gli strumenti impiegati ed a formulare giudizi autonomi.

 

Abilità comunicative.

Gli studenti saranno in grado di comunicare, anche attraverso relazioni, le tecniche impiegate ed i risultati delle analisi effettuate.

 

Capacità di apprendimento.

Al termine del corso, ci si aspetta che gli studenti abbiano sviluppato le adeguate conoscenze e competenze nel campo della chimica fisica applicata alla caratterizzazione di materiali metallici impiegati in batterie e sistemi elettrochimici di accumulo e di materiali metallici coinvolti in processi di corrosione ed elettrodeposizione. Tali competenze e conoscenze saranno utili al prosieguo del loro percorso di studi magistrali nell’area Industriale con un elevato grado di autonomia.

Lezioni frontali, esercitazioni numeriche e di laboratorio.

L’esame finale orale consiste nella discussione di una relazione preparata dallo studente, relativa all'approfondimento di un argomento trattato durante l’attività di laboratorio e/o durante le lezioni frontali.

Orario di ricevimento:

lunedì 11.30-12.30;

mercoledì 12.30-13.30;

altri giorni per appuntamento fissato tramite e-mail o al termine delle lezioni.

- Termodinamica dei sistemi complessi e delle superfici. Teoria ed esercitazioni di laboratorio relative agli equilibri termodinamici di interesse per l'ingegneria. Teoria ed esercitazione di laboratorio sulla tensione superficiale.

- Cenni di cinetica chimica. Teoria ed esercitazioni numeriche e di laboratorio di cinetica e di reattoristica chimica.

- Chimica fisica dei sistemi elettrochimici. Teoria ed esercitazioni di laboratorio su misure potenziostatiche, potenziodinamiche, galvanostatiche, galvanodinamiche. Teoria ed esercitazioni di laboratorio di spettroscopia applicata all'elettrochimica.

- Batterie e sistemi di accumulo. Principi di funzionamento di una batteria. Componenti di celle e batterie. Realizzazione pratica di una pila. Esercitazioni numeriche e di laboratorio su batterie primarie e batterie ricaricabili, celle a combustibile e supercapacitori.

- Aspetti chimico-fisici e cinetici dei processi di corrosione ed elettrodeposizione. Esercitazioni numeriche e di laboratorio relative ad aspetti stechiometrici, termodinamici e cinetici dei processi di corrosione ed elettrodeposizione

R.T. Dehoff - Thermodynamics in Material Science

F.R. Foulkes - Physical Chemistry for Engineering and Applied Science

S. Carrà, M. Morbidelli - Chimica Fisica Applicata

P.W. Atkins – Chimica Fisica

Materiale didattico fornito dal docente

LABORATORIO DI CHIMICA E FISICA APPLICATA (ING-IND/23)
ELECTROCHEMICAL TECHNOLOGIES

Degree course MATERIALS ENGINEERING AND NANOTECHNOLOGY

Subject area ING-IND/23

Course type Laurea Magistrale

Credits 9.0

Teaching hours Ore totali di attività frontale: 81.0

For matriculated on 2019/2020

Year taught 2019/2020

Course year 1

Semestre Secondo Semestre (dal 02/03/2020 al 05/06/2020)

Language INGLESE

Subject matter PERCORSO COMUNE (999)

Location Lecce

Prerequisite

Basic knowledge of calculus, physics and chemistry.

Contents

The course is focused on the fundamentals of electrochemistry and its technological applications, including corrosion, industrial electrochemical processes and electrochemical energy conversion and storage systems.

Learning outcomes

Knowledge and understanding

The aim of the course is to provide students with the fundamentals of electrochemistry and its technological applications, including corrosion, industrial electrochemical processes and electrochemical energy conversion and storage systems.

Applying knowledge and understanding

After the course, the students should:
- have acquired the skills necessary to address the broad theme of electrochemical technologies, discussing in particular the most important variables, both from a thermodynamic and kinetic point of view;
- have understood the mechanisms of charge transfer and be able to describe the structure of the electrochemical interface;
- have acquired the basic tools for understanding the corrosion of metallic materials in the different environments in which they can be used;
- be able to discuss the electrochemical processes applied to industrial production;
- have understood the electrochemical devices for electrochemical energy conversion and storage systems.

Making judgements

The course provides the ability to critically address electrochemical, corrosion and energy conversion and storage problems.

Communication

The course promotes the ability of the students to expose to experts their acquired scientific knowledge in precise and formal terms and to non-specialists by using elementary concepts.

Learning skills

Students are encouraged to acquire the critical skills to deal with typical theoretical and practical electrochemical problems. They should be able to expose their acquired knowledge summarizing notions from books and slides.

Teaching Methods

The course consists of frontal lessons using slides made available to students and classroom exercises. The frontal lessons are aimed at improving students' knowledge through the presentation of theories, models and methods. Numerical and practical exercises are aimed at a better understanding of the theory.

Examination

In the final exam (oral) the topics presented during the lectures will be addressed; the results obtained during the laboratory exercises will be discussed with the possibility to solve simple numerical exercises.

Office hours

Wednesday, 11.30-13.30;

other days, by appointment fixed by e-mail or at the end of the class.

Course Content

1. Fundamentals of electrochemistry                                                     (6 hours)

Fundamentals of electrochemistry. Ions, electrolytes and quantisation of the electrical charge. The nature of electrode reactions. Transition from electronic to ionic conductivity in an electrochemical cell.                        

2. The electrode-solution interface                                                          (6 hours)

The electrode-solution interface. The electrical double layer. Electrolysis cells and Galvanic cells.

3. Electrochemical thermodynamics                                                      (9 hours)

Electrochemical thermodynamics. Complex thermodynamic systems. Equilibrium in thermodynamic Systems. Thermodinamical potentials. Chemical work. Chemical potential. Unary and multicomponent, homogeneous and heterogeneous systems. Nonreacting and reacting systems. Conditions for equilibrium. Thermodinamics of surfaces. Surface tension. The equilibrium shape of crystals. Adsorption at surfaces. Electrode potential and thermodynamics. Electrochemical potential. Electrocapillary equation.                             

4. Electrochemical kinetics                                                                       (9 hours)

Electrochemical kinetics. Kinetics aspects of the corrosion. Overpotential. Activation, concentration and ohmic overpotentials. Butler-Volmer equation. Tafel equation. Limit current. Mass transfer and current distribution in electrochemical systems. Transport in electrolytic solutions. Primary and secondary current distribution.

5. Corrosion                                                                                                 (9 hours)              

Fundamentals aspects of corrosion of metallic materials. Uniform and localized corrosion. Faraday laws. Electrochemical mechanism of the corrosion. Anodic and cathodic reactions. Thermodynamics aspects of the corrosion. Nernst equation. Stability diagram for water. Applications of the Nernst Equation. Cell potentials and concentrations. Concentration cells. Pourbaix Diagrams. Corrosion, passivation and immunity regions. Passivation and passivity of metals. Active-passive metals. Principles of galvanic corrosion. Evans Diagrams. Corrosion prevention and protection methods.                                     

6. Industrial electrochemical processes.                                                 (6 hours)

Electrodeposition, electroforming, electrorefining.                                                                   

7. Electrochemical energy conversion and storage systems            (6 hours)

Electrochemical energy conversion and storage systems. Primary and secondary batteries. Electrochemical reactions. Storage capacity. Energy density. Power density. Fuel cells. Electrochemical supercapacitors.

8. Techniques for the study of electrochemical interfaces (6 hours)                              

Electrochemical methods for the study of the electrode/electrolyte interface. Quasi-stationary methods. Two electrode and three electrode systems.

Numerical exercises

9. Corrosion                                                                                                  (6 hours)

10. Electrochemical energy conversion and storage systems       (6 hours)

Laboratory exercises

11. Electrochemical techniques                                                                (6 hours)              

Electrochemical techniques. The potentiostat. Current-potential curves. Quasi-stationary methods. Cyclic voltammetry.    

12. Spectroelectrochemical techniques                                                  (6 hours)              

Spectroelectrochemical techniques. Infrared spectroscopy. Raman spectroscopy. Spectroellipsometry

Textbooks

[1] C.H. Hamann, A. Hamnett, V. Vielstich - Electrochemistry

[2] V. S. Bagotsky - Fundamentals of Electrochemistry

[3] R.T. Dehoff - Thermodynamics in Materials Science

[4] P. Pedeferri - Corrosione e protezione dei materiali metallici

ELECTROCHEMICAL TECHNOLOGIES (ING-IND/23)
LABORATORIO DI CHIMICA FISICA APPLICATA C.I

Corso di laurea INGEGNERIA INDUSTRIALE

Settore Scientifico Disciplinare ING-IND/23

Tipo corso di studio Laurea

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 54.0

Per immatricolati nel 2017/2018

Anno accademico di erogazione 2019/2020

Anno di corso 3

Lingua ITALIANO

Percorso Curriculum materiali (A92)

Conoscenze di base di chimica e fisica

Il corso intende fornire agli studenti conoscenze che riguardano aspetti termodinamici e cinetici relativi a sistemi complessi e superfici, a batterie e sistemi elettrochimici di accumulo e a processi di corrosione ed elettrodeposizione. Ampia parte del corso verrà dedicata ad esperienze di laboratorio con l’esecuzione di prove descritte durante le lezioni frontali, l’individuazione dei parametri di prova e l’analisi dei risultati.

Conoscenza e comprensione.

Gli studenti acquisiranno le competenze per analizzare gli aspetti chimico-fisici di sistemi termodinamici complessi. Inoltre, acquisiranno dimestichezza con l’impiego di tecniche elettrochimiche e spettroelettrochimiche per la caratterizzazione di materiali metallici impiegati in batterie e sistemi elettrochimici di accumulo e di materiali metallici coinvolti in processi di corrosione ed elettrodeposizione.

 

Capacità di applicare conoscenza e comprensione

Le competenze acquisite permetteranno agli studenti di identificare le tecniche elettrochimiche e spettroelettrochimiche opportune per caratterizzare materiali metallici impiegati in batterie o coinvolti in problemi di corrosione.

 

Autonomia di giudizio.

Al termine del corso, gli studenti acquisiranno le adeguate capacità per raccogliere, organizzare ed analizzare i dati sperimentali ottenuti con gli strumenti impiegati ed a formulare giudizi autonomi.

 

Abilità comunicative.

Gli studenti saranno in grado di comunicare, anche attraverso relazioni, le tecniche impiegate ed i risultati delle analisi effettuate.

 

Capacità di apprendimento.

Al termine del corso, ci si aspetta che gli studenti abbiano sviluppato le adeguate conoscenze e competenze nel campo della chimica fisica applicata alla caratterizzazione di materiali metallici impiegati in batterie e sistemi elettrochimici di accumulo e di materiali metallici coinvolti in processi di corrosione ed elettrodeposizione. Tali competenze e conoscenze saranno utili al prosieguo del loro percorso di studi magistrali nell’area Industriale con un elevato grado di autonomia.

Lezioni frontali, esercitazioni numeriche e di laboratorio.

L’esame finale orale consiste nella discussione di una relazione preparata dallo studente, relativa all'approfondimento di un argomento trattato durante l’attività di laboratorio e/o durante le lezioni frontali.

Orario di ricevimento:

lunedì 11.30-12.30;

mercoledì 12.30-13.30;

altri giorni per appuntamento fissato tramite e-mail o al termine delle lezioni.

- Termodinamica dei sistemi complessi e delle superfici. Teoria ed esercitazioni di laboratorio relative agli equilibri termodinamici di interesse per l'ingegneria. Teoria ed esercitazione di laboratorio sulla tensione superficiale.

- Cenni di cinetica chimica. Teoria ed esercitazioni numeriche e di laboratorio di cinetica e di reattoristica chimica.

- Chimica fisica dei sistemi elettrochimici. Teoria ed esercitazioni di laboratorio su misure potenziostatiche, potenziodinamiche, galvanostatiche, galvanodinamiche. Teoria ed esercitazioni di laboratorio di spettroscopia applicata all'elettrochimica.

- Batterie e sistemi di accumulo. Principi di funzionamento di una batteria. Componenti di celle e batterie. Realizzazione pratica di una pila. Esercitazioni numeriche e di laboratorio su batterie primarie e batterie ricaricabili, celle a combustibile e supercapacitori.

- Aspetti chimico-fisici e cinetici dei processi di corrosione ed elettrodeposizione. Esercitazioni numeriche e di laboratorio relative ad aspetti stechiometrici, termodinamici e cinetici dei processi di corrosione ed elettrodeposizione

R.T. Dehoff - Thermodynamics in Material Science

S. Carrà, M. Morbidelli - Chimica Fisica Applicata

P.W. Atkins – Chimica Fisica

Materiale didattico fornito dal docente

LABORATORIO DI CHIMICA FISICA APPLICATA C.I (ING-IND/23)
ELECTROCHEMICAL TECHNOLOGIES

Degree course MATERIALS ENGINEERING AND NANOTECHNOLOGY

Subject area ING-IND/23

Course type Laurea Magistrale

Credits 9.0

Teaching hours Ore totali di attività frontale: 81.0

For matriculated on 2018/2019

Year taught 2018/2019

Course year 1

Semestre Secondo Semestre (dal 04/03/2019 al 04/06/2019)

Language INGLESE

Subject matter PERCORSO COMUNE (999)

Location Lecce

Prerequisite

Basic knowledge of calculus, physics and chemistry.

Contents

The course is focused on the fundamentals of electrochemistry and its technological applications, including corrosion, industrial electrochemical processes and electrochemical energy conversion and storage systems.

Learning outcomes

Knowledge and understanding

The aim of the course is to provide students with the fundamentals of electrochemistry and its technological applications, including systems for conversion and storage of corrosion, industrial electrochemical processes and electrochemistry.

Applying knowledge and understanding

After the course, the students should:
- have acquired the skills necessary to address the broad theme of electrochemical technologies, discussing in particular the most important variables, both from a thermodynamic and kinetic point of view;
- have understood the mechanisms of charge transfer and be able to describe the structure of the electrochemical interface;
- have acquired the basic tools for understanding the corrosion of metallic materials in the different environments in which they can be used;
- be able to discuss the electrochemical processes applied to industrial production;
- have understood the electrochemical devices for electrochemical energy conversion and storage systems.

Making judgements

The course provides the ability to critically address electrochemical, corrosion and energy conversion and storage problems.

Communication

The course promotes the ability of the students to expose to experts their acquired scientific knowledge in precise and formal terms and to non-specialists by using elementary concepts.

Learning skills

Students are encouraged to acquire the critical skills to deal with typical theoretical and practical electrochemical problems. They should be able to expose their acquired knowledge summarizing notions from books and slides.

Teaching Methods

The course consists of frontal lessons using slides made available to students and classroom exercises. The frontal lessons are aimed at improving students' knowledge through the presentation of theories, models and methods. Numerical and practical exercises are aimed at a better understanding of the theory.

Examination

In the final exam (oral) the topics presented during the lectures will be addressed; the results obtained during the laboratory exercises will be discussed with the possibility to solve simple numerical exercises.

Office hours

Wednesday, 11.30-13.30;

other days, by appointment fixed by e-mail or at the end of the class.

Course Content

1. Fundamentals of electrochemistry                                                     (6 hours)

Fundamentals of electrochemistry. Ions, electrolytes and quantisation of the electrical charge. The nature of electrode reactions. Transition from electronic to ionic conductivity in an electrochemical cell.                        

2. The electrode-solution interface                                                          (5 hours)

The electrode-solution interface. The electrical double layer. Electrolysis cells and Galvanic cells.

3. Electrochemical thermodynamics                                                      (9 hours)

Electrochemical thermodynamics. Complex thermodynamic systems. Equilibrium in thermodynamic Systems. Thermodinamical potentials. Chemical work. Chemical potential. Unary and multicomponent, homogeneous and heterogeneous systems. Nonreacting and reacting systems. Conditions for equilibrium. Thermodinamics of surfaces. Surface tension. The equilibrium shape of crystals. Adsorption at surfaces. Electrode potential and thermodynamics. Electrochemical potential. Electrocapillary equation.                             

4. Electrochemical kinetics                                                                       (9 hours)

Electrochemical kinetics. Kinetics aspects of the corrosion. Overpotential. Activation, concentration and ohmic overpotentials. Butler-Volmer equation. Tafel equation. Limit current. Mass transfer and current distribution in electrochemical systems. Transport in electrolytic solutions. Primary and secondary current distribution.

5. Corrosion                                                                                                 (9 hours)              

Fundamentals aspects of corrosion of metallic materials. Uniform and localized corrosion. Faraday laws. Electrochemical mechanism of the corrosion. Anodic and cathodic reactions. Thermodynamics aspects of the corrosion. Nernst equation. Stability diagram for water. Applications of the Nernst Equation. Cell potentials and concentrations. Concentration cells. Pourbaix Diagrams. Corrosion, passivation and immunity regions. Passivation and passivity of metals. Active-passive metals. Principles of galvanic corrosion. Evans Diagrams. Corrosion prevention and protection methods.                                     

6. Industrial electrochemical processes.                                                 (6 hours)

Electrodeposition, electroforming, electrorefining.                                                                   

7. Electrochemical energy conversion and storage systems            (6 hours)

Electrochemical energy conversion and storage systems. Primary and secondary batteries. Electrochemical reactions. Storage capacity. Energy density. Power density. Fuel cells. Electrochemical supercapacitors.

8. Techniques for the study of electrochemical interfaces (6 hours)                              

Electrochemical methods for the study of the electrode/electrolyte interface. Quasi-stationary methods. Two electrode and three electrode systems.

Numerical excercises

9. Corrosion                                                                                                  (6 hours)

10. Electrochemical energy conversion and storage systems       (7 hours)

 Laboratory exercises

11. Electrochemical techniques                                                                (6 hours)              

Electrochemical techniques. The potentiostat. Current-potential curves. Quasi-stationary methods. Cyclic voltammetry.    

12. Spectroelectrochemical techniques                                                  (6 hours)              

Spectroelectrochemical techniques. Infrared spectroscopy. Raman spectroscopy. Spectroellipsometry

Textbooks

[1] C.H. Hamann, A. Hamnett, V. Vielstich - Electrochemistry

[2] V. S. Bagotsky - Fundamentals of Electrochemistry

[3] R.T. Dehoff - Thermodynamics in Materials Science

[4] P. Pedeferri - Corrosione e protezione dei materiali metallici

ELECTROCHEMICAL TECHNOLOGIES (ING-IND/23)
ELECTROCHEMICAL TECHNOLOGIES

Degree course MATERIALS ENGINEERING AND NANOTECHNOLOGY

Subject area ING-IND/23

Course type Laurea Magistrale

Credits 9.0

Teaching hours Ore totali di attività frontale: 0.0

For matriculated on 2017/2018

Year taught 2017/2018

Course year 1

Semestre Secondo Semestre (dal 01/03/2018 al 01/06/2018)

Language INGLESE

Subject matter PERCORSO COMUNE (999)

Location Lecce

ELECTROCHEMICAL TECHNOLOGIES (ING-IND/23)
CHIMICA FISICA APPLICATA

Corso di laurea INGEGNERIA INDUSTRIALE

Settore Scientifico Disciplinare ING-IND/23

Tipo corso di studio Laurea

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 0.0

Per immatricolati nel 2014/2015

Anno accademico di erogazione 2016/2017

Anno di corso 3

Semestre Secondo Semestre (dal 01/03/2017 al 02/06/2017)

Lingua

Percorso PERCORSO COMUNE (999)

Sede Lecce - Università degli Studi

CHIMICA FISICA APPLICATA (ING-IND/23)
ELECTROCHEMICAL TECHNOLOGIES

Degree course MATERIALS ENGINEERING AND NANOTECHNOLOGY

Subject area ING-IND/23

Course type Laurea Magistrale

Credits 9.0

Teaching hours Ore totali di attività frontale: 81.0

For matriculated on 2016/2017

Year taught 2016/2017

Course year 1

Semestre Secondo Semestre (dal 01/03/2017 al 02/06/2017)

Language INGLESE

Subject matter PERCORSO COMUNE (999)

Location Lecce

ELECTROCHEMICAL TECHNOLOGIES (ING-IND/23)
ELECTROCHEMICAL TECHNOLOGIES

Degree course MATERIALS ENGINEERING AND NANOTECHNOLOGY

Subject area ING-IND/23

Course type Laurea Magistrale

Credits 9.0

Teaching hours Ore totali di attività frontale: 81.0

For matriculated on 2015/2016

Year taught 2015/2016

Course year 1

Semestre Secondo Semestre (dal 29/02/2016 al 03/06/2016)

Language INGLESE

Subject matter PERCORSO COMUNE (999)

Location Lecce

ELECTROCHEMICAL TECHNOLOGIES (ING-IND/23)
ELECTROCHEMICAL TECHNOLOGIES

Corso di laurea MATERIALS ENGINEERING AND NANOTECHNOLOGY

Settore Scientifico Disciplinare ING-IND/23

Tipo corso di studio Laurea Magistrale

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 0.0

Per immatricolati nel 2014/2015

Anno accademico di erogazione 2014/2015

Anno di corso 1

Semestre Secondo Semestre (dal 02/03/2015 al 06/06/2015)

Lingua

Percorso PERCORSO COMUNE (999)

Sede Lecce - Università degli Studi

ELECTROCHEMICAL TECHNOLOGIES (ING-IND/23)
ELECTROCHEMICAL TECHNOLOGIES

Corso di laurea MATERIALS ENGINEERING AND NANOTECHNOLOGY

Settore Scientifico Disciplinare ING-IND/23

Tipo corso di studio Laurea Magistrale

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 0.0

Per immatricolati nel 2013/2014

Anno accademico di erogazione 2013/2014

Anno di corso 1

Semestre Secondo Semestre (dal 03/03/2014 al 31/05/2014)

Lingua

Percorso PERCORSO COMUNE (999)

Sede Lecce - Università degli Studi

ELECTROCHEMICAL TECHNOLOGIES (ING-IND/23)

Pubblicazioni

2003

[1] B. Bozzini, A. Fanigliulo, C. Mele

An Electrochemical and Spectroelectrochemical Study of the Electrodeposition of Gold from KAu(CN)2 Solutions Containing 4-Cyanopyridine and Cetylpyridinium Chloride

Transactions of the Institute of Metal Finishing, 81(2) (2003) 59-67.

[2] B. Bozzini, G. P. De Gaudenzi, A. Fanigliulo, C. Mele

Anodic Behaviour of WC-Co Type Hardmetal

Werkstoffe und Korrosion / Materials and Corrosion, 54 (2003) 1-10.

[3] A. Fanigliulo, C. Mele, B. Bozzini

An Electrochemical and In-Situ Sers Study of Au Electrodeposition from a Thiourea Solution

Transactions of the Institute of Metal Finishing, 81(3) (2003) 75-78.

[4] B. Bozzini, A. Fanigliulo, G. Giovannelli, S. Natali, C. Mele

Electrodeposition of Au-Sn Alloys from Acid Au(III) Baths

Journal of Applied Electrochemistry, 33 (2003) 747-754.

[5] B. Bozzini, G.P. De Gaudenzi, C. Mele

An In-Situ FT-IR Investigation of the Anodic Behaviour of WC-Co Hardmetal

Werkstoffe und Korrosion / Materials and Corrosion, 54, No. 9 (2003) 694-696.

[6] B. Bozzini, M.E. Ricotti, M. Boniardi, C. Mele

Evaluation of Erosion-Corrosion in Multiphase Flow via CFD and Experimental Analysis

Wear, 255 (2003) 237-245.

 

2004

[7] B. Bozzini, G. P. De Gaudenzi, A. Fanigliulo, C. Mele

Electrochemical Oxidation of WC in Acidic Sulphate Solution

Corrosion Science, 46 (2004) 453-469.

[8] B. Bozzini, P.L. Cavallotti, A. Fanigliulo, G. Giovannelli, C. Mele, S. Natali

Electrodeposition of White Gold Alloys: An Electrochemical and Spectroelectrochemical Study of the Electrodeposition of Au-Sn Alloys in the Presence of 4-Cyanopyridine

Journal of Solid State Electrochemistry, 8 (2004) 147-158.

[9] B. Bozzini, C. Mele, I. Sgura

On the Observation of Inductive High-Frequency Ice Behaviour During the Electrodepositon of Au-Sn Alloys

Journal of Applied Electrochemistry, 34 (2004) 277-281.

[10] B. Bozzini, G.P. De Gaudenzi, C. Mele

A Sers Investigation of the Electrodeposition of Ag-Au Alloys from Free-Cyanide Solutions

Journal of Electroanalytical Chemistry, 563 (2004) 133-143.

[11] F. Huerta, C. Mele, B. Bozzini, E. Morallon

Voltammetric and in Situ FTIRS Study on CN- and Au(CN)X¯ Complexes at the Polycrystalline Gold Surface in Citrate Medium

Journal of Electroanalytical Chemistry, 569 (2004) 53–60

[12] B. Bozzini, G.P. De Gaudenzi, C. Mele

A Sers Investigation of the Electrodeposition of Ag-Au Alloys from Free-Cyanide Solutions – Part II

Journal of Electroanalytical Chemistry, 570 (2004) 29-34.

[13] B. Bozzini, C. Mele, A. Tadjeddine

Electrochemical adsorption of cyanide on Ag(111) in the presence of Cetylpyridinium Chloride

Journal of Crystal Growth, 271 (2004) 274-286.

[14] B. Bozzini, C. Mele, A. Fanigliulo, B. Busson, F.Vidal, A. Tadjeddine

An SFG Investigation of Au(111) and Au(210) Electrodes in Aqueous Solutions Containing KCN And Cetylpyridinium Chloride

Journal of Electroanalytical Chemistry, 574 (2004), 85-94.

[15] B. Bozzini, L. D'Urzo, G. Giovannelli, C. Mele

An in Situ Raman Investigation of Organic Cu Layers Electrodeposited From PEG-Containing Acidic Sulphate and Cyanoalkaline Electrolytes

Transactions of the Institute of Metal Finishing, 82 (2004) 118-122.

 

2005

[16] Bozzini, L. D'Urzo, C. Mele

Electrodeposition of Cu from cyanoalkaline solutions in the presence of CPC and PEG. An electrochemical and in-situ SERS investigation

Journal of The Electrochemical Society, 152 (2005) C255-C264

[17] B. Bozzini, G. P. De Gaudenzi, C. Mele

Electrochemical behaviour of alloy CoW0.013C0.001 in acidic sulphate solutions

Corrosion Engineering, Science and Technology, Vol. 40 N°2 (2005) 149-157

[18] B. Bozzini, G.P. De Gaudenzi, C. Mele

Corrosion Behaviour of the CoW0.013C0.001 Alloy in Acidic Sulphate Aqueous Solutions containing Sodium Lauryl Sulphate and Sodium Citrate

Corrosion Engineering, Science and Technology – Vol. 40 N°4 (2005) 290-300

 

2006

[19] B. Bozzini, G. Giovannelli, C. Mele, F. Brunella, S. Goidanich, P. Pedeferri

An investigation into the corrosion of Ag coins from the Greek colonies of Southern Italy. Part I - An in situ FT-IR and ERS investigation of the behaviour of Ag in contact with aqueous solutions containing 4-cyanopyridine

Corrosion Science, 48 (2006) 193–208

[20] B. Bozzini, C. Mele, L. D'Urzo

Electrodeposition of Cu from Acidic Sulphate Solutions in the Presence of PEG - Part II Visible Electroreflectance Spectroscopy Measurements during Electrodeposition

Journal of Applied Electrochemistry - 36 (2006) 87–96

[21] B. Bozzini, L. D'Urzo, V. Romanello, C. Mele.

Electrodeposition of Cu from Acidic Sulphate Solutions in the Presence of Bis-(3-sulfopropyl)-disulfide (SPS) and chloride ions

Journal of the Electrochemical Society, 153 (2006) C254-C257

[22] B. Bozzini, C. Mele, V. Romanello

Time-dependent in situ SERS study of CN¯ adsorbed on gold

Journal of Electroanalytical Chemistry 592 (2006) 25-30.

[23] B. Bozzini, L. D'Urzo, C. Mele, V. Romanello.

Electrodeposition of Cu from Acidic Sulphate Solutions in the Presence of Bis-(3-sulfopropyl)-disulfide (SPS)

Transactions of the Institute of Metal Finishing, 84 N°2 (2006) 83-93

[24] B. Bozzini, C. Mele, L. D'Urzo, G. Giovannelli, S. Natali

Electrodeposition of Cu from acidic sulphate solutions in the presence of PEG: an electrochemical and spectroelectrochemical investigation - Part I

Journal of Applied Electrochemistry 36 (2006) 789-800

[25] B. Bozzini, C. Mele, L. D'Urzo, V. Romanello

An Electrochemical and in situ SERS Study of Cu Electrodeposition from Acidic Sulphate Solutions in the Presence of 3-Diethylamino-7-(4-dimethylaminophenylazo)-5-phenylphenazinium chloride (Janus Green B)

Journal of Applied Electrochemistry – 36 (2006) 973–981

[26] B. Bozzini, L. D'Urzo, C. Mele, V. Romanello

Electrodeposition of Cu from Acidic Sulphate Solutions in the Presence of Polyethylene glycol and chloride ions.

Journal of Materials Science: Materials in Electronics, 17 (2006) 915-923.

[27] B. Bozzini, C. Mele, L. D'Urzo, V. Romanello, G. Giovannelli

Study on Levellers for Cu Electrodeposition from Acidic Sulphate Solution: an in situ Spectroelectrochemical Approach

Transactions of the Institute of Metal Finishing, 84 N°4 (2006) 177-187

[28] B. Bozzini, V. Romanello, G.P. De Gaudenzi, C. Mele

Controlled Corrosion of Micrometric and Submicrometric Metal Powders in a Fluidised Bed Reactor

Transactions of the Institute of Metal Finishing, 84 N°3 (2006) 154-158

 

2007

[29] B. Bozzini, G. Giovannelli, C. Mele

Electrochemical Dynamics and Structure of the Ag/AgCl Interface in Chloride-containing Aqueous Solutions

Surface & Coatings Technology, 201 (2007) 4619-4627

[30] B. Bozzini, B. Busson, G. P. De Gaudenzi, C. Mele, A. Tadjeddine

An SFG and DFG investigation of polycrystalline Au, Au-Cu and Au-Ag-Cu electrodes in contact with aqueous solutions containing KCN

Journal of Alloys and Compounds, 427 (2007) 341-349

[31] B. Bozzini, V. Romanello, C. Mele, F. Bogani

A SERS investigation of carbon steel in contact with aqueous solutions containing BenzylDiMethylPhenylAmmonium Chloride

Werkstoffe und Korrosion / Materials and Corrosion, 58 (2007) 20-24

[32] B. Bozzini, V. Romanello, C. Mele,

A SERS investigation of the electrodeposition of Au in a phosphate solution

Surface & Coatings Technology, 201 (2007) 6267-6272

[33] B. Bozzini, B. Busson, G. P. De Gaudenzi, L. D'Urzo, C. Mele, A. Tadjeddine

An in situ SFG and SERS Investigation into the Electrodeposition of Au from Au(CN)2¯ and Au(CN)4¯ Solutions

Journal of Electroanalytical Chemistry, 602 (2007) 61-69

[34] B. Bozzini, L. D'Urzo, C. Mele

A novel polymeric leveller for the electrodeposition of copper from acidic sulphate bath: A spectroelectrochemical investigation
Electrochimica Acta 52 (2007) 4767-4777

[35] B. Bozzini, B. Busson, G. P. De Gaudenzi, L. D'Urzo, C. Mele, A. Tadjeddine

An SFG and ERS investigation of the corrosion of CoW0.013C0.001 alloys and WC-Co cermets in CN--containing aqueous solutions

Corrosion Science 49 (2007) 2392-2405

[36] B. Bozzini, C. Mele, V. Romanello

An in situ FT-IR study evaluation of candidate organic corrosion inhibitors for carbon steel in contact with alkaline aqueous solutions.

Werkstoffe und Korrosion / Materials and Corrosion, 58 (2007) 362-368

[37] B. Bozzini, C. Mele, L. D'Urzo

An Optical Impedance Investigation of a Gold Electrodeposition System

The Open Physical Chemistry Journal, 1 (2007) 33-38

 

2008

[38] B. Bozzini, B. Busson, G.P. De Gaudenzi, C. Mele, A. Tajeddine

An SFG and DFG Investigation of Au(111), Au(100), Au(110) And Au(210) Electrodes in Contact with Aqueous Solutions containing KCN

Journal of Solid State Electrochemistry, 12 N°3 (2008) 303-313

[39] B. Bozzini, L. D'Urzo, C. Mele, V. Romanello

A Sers Investigation of Cyanide Adsorption and Reactivity during the Electrodeposition of Gold, Silver, and Copper from Aqueous Cyanocomplexes Solutions

Journal of Physical Chemistry C, 112 N°16 (2008) 6352-6358

[40] L. Peraldo Bicelli , B. Bozzini, C. Mele, L. D'Urzo

A Review of Nanostructural Aspects of Metal Electrodeposition

International Journal of Electrochemical Science, 3 N°4 (2008) 356-408

[41] B. Bozzini, B. Busson, C. Mele, A. Tadjeddine

SFG and DFG Investigation Of Au(111), Au(210), Polycrystalline Au, Au-Cu And Au-Ag-Cu Electrodes In Contact With Aqueous Solutions Containing KCN and 4-Cyanopyridine

Journal of Applied Electrochemistry, 38 N°7 (2008) 897-906

[42] B. Bozzini, L. D'Urzo, C. Mele, B. Busson, C. Humbert, A. Tadjeddine

Doubly Resonant Sum Frequency Generation Spectroscopy of Adsorbates At An Electrochemical Interface

Journal of Physical Chemistry C, 112 N°31 (2008) 11791-11795

[43] B. Bozzini, P. Carlino, L. D'Urzo, V. Pepe, C. Mele, F. Venturo

An Electrochemical Impedance Investigation of The Behaviour of Anodically Oxidised Titanium in Human Plasma and Cognate Fluids, Relevant to Dental Applications

Journal of Materials Science-Materials in Medicine, 19 N°11 (2008) 3443-3453

[44] B. Bozzini B, L. D'Urzo, C. Mele

Electrochemical Fabrication of Nano- and Micrometric Cu Particles: In Situ Investigation By Electroreflectance and Optical Second Harmonic Generation

Transactions of The Institute of Metal Finishing, 86 N°5 (2008) 267-274

 

2009

[45] C. Mele, S. Rondinini, L. D'Urzo, V. Romanello, E. Tondo, A. Minguzzi, A. Vertova, B. Bozzini

Silver electrodeposition from water-acetonitrile mixed solvents and mixed electrolytes, in the presence of tetrabutylammonium perchlorate. Part I – Electrochemical nucleation on glassy carbon electrode

Journal of Solid State Electrochemistry, 13 (2009) 1577-1584

[46] C. Mele, B. Bozzini

Silver Electrodeposition from water-acetonitrile mixed solvents in the presence of tetrabutylammonium perchlorate. Part II - A SERS study of acetonitrile reactivity and tetrabutylammonium adsorption

Journal of Solid State Electrochemistry, 13 (2009) 1553-1559

[47] B. Bozzini, L. D'Urzo, D. Lacitignola, C. Mele, I. Sgura, E. Tondo

Investigation into dynamics of Au electrodeposition based on analysis of SERS spectral time series

Transactions of the Institute of Metal Finishing, 87 (2009) 193-200

 

2010

[48] B. Bozzini, A. Bund, B. Busson, C. Humbert, A. Ispas, C. Mele, A. Tajeddine

An SFG/DFG investigation of CN- adsorption at an Au electrode in 1-butyl-1-methyl-pyrrolidinium bis(trifluoromethylsulfonyl) amide ionic liquid

Electrochemistry Communications, 12 (2010) 56-60

[49] C. Mele, B. Bozzini

Localised corrosion processes of austenitic stainless steel bipolar plates for polymer electrolyte membrane fuel cells
Journal of Power Sources, 195 (2010) 3590-3596

[50] E. Tondo, C. Mele, B. Bozzini

Silver Electrodeposition from water-acetonitrile mixed solvents. Part III-an in situ investigation by optical second harmonic generation spectroscopy

Journal of Solid State Electrochemistry, 14 (2010) 989-995

[51] B. Bozzini, C. Mele, E. Tondo

A SERS investigation of Cu electrodeposition in the presence of the model leveller 4-{2-[1-(2-cyanoethyl)-1,2,3,4-tetrahydroquinolin-6-yl]diazenyl} benzonitrile

Electrochimica Acta, 55 (2010) 3279-3285

[52] B. Bozzini B, L. D'Urzo, C. Mele, B. Busson, A. Tajeddine

Au electrodeposition in presence of self-assembling organics: in situ study by sum frequency generation and surface enhanced Raman spectroscopy

Transactions of the Institute of Metal Finishing, 88 (2010) 130-143

[53] B. Bozzini, I. Sgura, D. Lacitignola, C. Mele, M. Marchitto, A. Ciliberto

Prediction of Morphological Properties of Smart-Coatings for Cr Replacement, Based on Mathematical Modelling

Advanced Materials Research, 138 (2010) 93-106

 

2011

[54] B. Bozzini, E. Tondo, A. Bund, A. Ispas, C. Mele

Electrodeposition of Au from [EMIm][TFSA] room temperature ionic liquid: an electrochemical and Surface-Enhanced Raman Spectroscopy study

Journal of Electroanalytical Chemistry 651 (2011) 1-11

[55] B. Bozzini, P. Carlino, C. Mele

Electrochemical behaviour and surface characterisation of Zr exposed to an SBF solution containing glycine, in view of dental implant applications

Journal of Materials Science-Materials in Medicine, 22 (2011) 193-200.

[56] B. Bozzini, A. Gianoncelli, B. Kaulich, M. Kiskinova, C. Mele, M. Prasciolu

Corrosion of Ni in 1-butyl-1-methyl-pyrrolidinium bis (trifluoromethylsulfonyl) amide room-temperature ionic liquid: an in-situ X-ray imaging and spectromicroscopy study

Physical Chemistry Chemical Physics, 13 (2011) 7968-7974

[57] B. Bozzini, C. Mele, A. Gianoncelli, B. Kaulich, M. Kiskinova, M. Prasciolu

In-situ X-ray spectromicroscopy study of bipolar plate material stability for nano-fuel-cells with ionic-liquid electrolyte

Microelectronic Engineering, 88 (2011) 2456-2458

[58] V. Martina, M.F. De Riccardis, D. Carbone, P. Rotolo, B. Bozzini, C. Mele

Electrodeposition of polyaniline–carbon nanotubes composite films and investigation on their role in corrosion protection of austenitic stainless steel by SNIFTIR analysis

Journal of Nanoparticle Research, 13 (2011) 6035-6047

[59] B. Bozzini, B. Busson, C. Humbert, C. Mele, P. Raffa, A. Tadjeddine

Investigation of Au electrodeposition from [BMP][TFSA] room-temperature ionic liquid containing K[Au(CN)2] by in situ two-dimensional sum frequency generation spectroscopy

Journal of Electroanalytical Chemistry, 661 (2011) 20-24.

 

2012

[60] B. Bozzini, A. Gianoncelli, B. Kaulich, C. Mele, M. Prasciolu, M. Kiskinova

Electrodeposition of manganese oxide from eutectic urea/choline chloride ionic liquid: an in situ study based on soft X-ray spectromicroscopy and visible reflectivity

Journal of Power Sources, 211 (2012) 71-76

[61] B. Bozzini, B. Busson, A. Gayral, C. Humbert, C. Mele, C. Six, A. Tadjeddine

In situ electrochemical SFG/DFG study of CN¯ and nitrile adsorption at Au from 1-butyl-1-methyl-pyrrolidinium bis(trifluoromethylsulfonyl) amide ionic liquid ([BMP][TFSA]) containing 4-{2-[1-(2-cyanoethyl)-1,2,3,4-tetrahydroquinolin-6-yl]diazenyl} benzonitrile (CTDB) and K[Au(CN)2]

Molecules 17 (2012) 7722-7736

[62] H. Hassannejad, C. Mele, T. Shahrabi, B. Bozzini

Electrodeposition of Ni/ceria composites: an in situ visible reflectance investigation

Journal of Solid State Electrochemistry, 16 (2012) 3429-3441.

[63] C. Mele, B. Bozzini

Corrosion performance of austenitic stainless steel bipolar plates for Nafion- and room-temperature ionic-liquid-based PEMFCs

The Open Fuels and Energy Science Journal 5 (2012) 47-52.

 

[64] B. Bozzini. M. Amati, L. Gregoratti, C. Mele, M.K. Abyaneh, M. Prasciolu, M. Kiskinova

In situ photoelectron microspectroscopy during the operation of a single-chamber SOFC

Electrochemistry Communications 24 (2012) 104-107

[65] B. Bozzini, D. Lacitignola, C. Mele, I. Sgura

Coupling of Morphology and Chemistry Leads to Morphogenesis in Electrochemical Metal Growth: a Review of the Reaction-Diffusion Approach

Acta Appl Math, 122 n.1 (2012), 53-68

[66] B. Bozzini, D. Lacitignola, C. Mele, I. Sgura

Morphogenesis in metal electrodeposition

Note di Matematica 32 n. 1 (2012), 7–46.

[67] C. Mele, B. Bozzini

Electrodeposition of a Au-Dy2O3 composite solid oxide fuel cell catalyst from eutectic urea/choline chloride ionic liquid.

Energies, 5 (2012) 5363-5371

 

2013

[68] B Bozzini, A. Gianoncelli, B. Kaulich, C. Mele, M. Prasciolu, M. Kiskinova

In situ Soft X-ray Microscopy Study of Fe Interconnect Corrosion in Ionic Liquid-Based Nano-PEMFC Half-Cells

Fuel Cells. 13 (2013) 196-202.

[69] C. Mele, M. Catalano, A. Taurino, B. Bozzini

Electrochemical fabrication of nanoporous gold-supported manganese oxide nanowires based on electrodeposition from eutectic urea/choline chloride ionic liquid

Electrochimica Acta, 87 (2013) 918-924.

[70] B. Bozzini, M. K. Abyaneh, B. Busson, G.P. De Gaudenzi, L. Gregoratti, C. Humbert, M. Amati, C. Mele, A. Tadjeddine

Spectroelectrochemical study of the electro-oxidation of ethanol on WC-supported Pt Part III: Monitoring of electrodeposited-Pt catalyst aging by in situ Fourier transform infrared spectroscopy, in situ sum Frequency generation spectroscopy and ex situ photoelectron spectromicroscopy.

Journal of Power Sources 231 (2013) 6-17.

[71] A. Gianoncelli, B. Kaulich, M. Kiskinova, C. Mele, M. Prasciolu, I. Sgura, B. Bozzini

Fabrication and testing of an electrochemical microcell for in situ soft X-ray microspectroscopy measurements.

Journal of Physics: Conference Series, 425 (2013) 182010.

[72] B. Bozzini, A. Gianoncelli, C. Mele, M. Kiskinova

Electrochemical fabrication of nanoporous gold decorated with manganese oxide nanowires from eutectic urea/choline chloride ionic liquid. Part II - Electrodeposition of Au-Mn: A study based on soft X-ray microspectroscopy

Electrochimica Acta 114 (2013) 889-896.

 

2014

[73] B. Bozzini, A. Barca, F. Bogani, M. Boniardi, P. Carlino, C. Mele, T. Verri, A. Romano

Electrodeposition of nanostructured bioactive hydroxyapatite-heparin composite coatings on titanium for dental implant applications.

Journal of Materials Science-Materials in Medicine, 25 (2014) 1425-1434

[74] B. Bozzini, A. Gianoncelli, C. Mele, I. Sgura, M. Kiskinova

Electrodeposition of a Mn-Cu-ZnO Hybrid Material for Supercapacitors: A Soft X-ray Fluorescence and Absorption Microspectroscopy Study

ChemElectroChem 1 (2014) 392-399

[75] B. Bozzini, A. Gianoncelli, C. Mele, M.K. Abyaneh, D. Jezeršek, I. Sgura, M. Kiskinova

Pulse-Plating of Mn-Cu-ZnO for Supercapacitors: A Study Based on Soft X-ray Fluorescence and Absorption Microspectroscopy

ChemElectroChem 1 (2014) 1161-1172

[76] H. Hassannejad, F. Bogani, M. Boniardi, A. Casaroli, C. Mele, B. Bozzini

Electrodeposition of DLC films on carbon steel from acetic acid solutions

Transactions of the Institute of Metal Finishing, 92 (2014) 183-188.

[77] B. Bozzini, P. Bocchetta, A. Gianoncelli, C. Mele, M. Kiskinova

Electrodeposition of Co/CoO nanoparticles onto graphene for orr electrocatalysis: A study based on micro-x-ray absorption spectroscopy and x-ray fluorescence mapping

Acta Chimica Slovenica, 61 (2014) 263-271.

[78] P. Bocchetta, A. Gianoncelli, M.K. Abyaneh, M. Kiskinova, M. Amati, L. Gregoratti, D. Jezeršek, C. Mele, B. Bozzini

Electrosynthesis of Co/PPy nanocomposites for ORR electrocatalysis: A study based on quasi-in situ X-ray absorption, fluorescence and in situ Raman spectroscopy

Electrochimica Acta, 137 (2014) 535-545.

[79] B. Bozzini, A. Gianoncelli, C. Mele, A. Siciliano, L. Mancini

Electrochemical reconstruction of a heavily corroded Tarentum hemiobolus silver coin: A study based on microfocus X-ray computed microtomography

Journal of Archaeological Science 52 (2014) 24-30.

 

2015

[80] C. Mele, B. Bozzini

Spectroelectrochemical investigation of the anodic and cathodic behaviour of zinc in 5.3 M KOH

Journal of Applied Electrochemistry 45 (2015) 43-50

[81] B. Bozzini, P. Bocchetta, A. Gianoncelli, C. Mele, M. Kiskinova

Electrodeposition and Ageing of Mn-Based Binary Composite Oxygen Reduction Reaction Electrocatalysts

ChemElectroChem 2 (2015) 1541-1550

[82] B. Bozzini, M. Altissimo, M. Amati, P. Bocchetta, A. Gianoncelli, L. Gregoratti, G. Kourousias, L. Mancini, C. Mele, M. Kiskinova

In Situ X-ray Microspectroelectrochemical Methods for the Study of Zinc-air Batteries

In: Reedijk, J. (Ed.) Elsevier Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Waltham, MA: Elsevier. doi: 10.1016/B978-0-12-409547-2.11452-0.

 

2016

[83] B. Bozzini, B. Busson, G.P. De Gaudenzi, C. Humbert, C. Mele, S. Tedeschi, A. Tadjeddine

Corrosion of cemented carbide grades in petrochemical slurries. Part I - Electrochemical adsorption of CN-, SCN- and MBT: A study based on in situ SFG

International Journal of Refractory Metals and Hard Materials 60 (2016) 37-51

[84] B. Bozzini, B. Busson, C. Humbert, C. Mele, A. Tadjeddine.

Electrochemical fabrication of nanoporous gold decorated with manganese oxide nanowires from eutectic urea/choline chloride ionic liquid. Part III – Electrodeposition of Au–Mn: a study based on in situ Sum-Frequency Generation and Raman spectroscopies

Electrochimica Acta 218 (2016) 208-215

[85] P. Bocchetta, B. Alemán, M. Amati, M. Fanetti, A. Goldoni, L. Gregoratti, M. Kiskinova, C. Mele, H. Sezen, B. Bozzini

ORR stability of Mn-Co/polypyrrole nanocomposite electrocatalysts studied by quasi in-situ identical-location photoelectron microspectroscopy

Electrochemistry Communications, 69 (2016) 50-54

 

2017

[86] C. Mele, M.V. Boniardi,  A. Casaroli, M. Degli Esposti, D. Di Pietro, P. Guastamacchia,  B. Bozzini

A comprehensive assessment of the performance of corrosion resistant alloys in hot acidic brines for application in oil and gas production

Corrosion Engineering, Science and Technology, 55:2 (2017) 99-113

[87] C. Mele, B. Bozzini

A simple and safe method to implement corrosion experiments with 1 bar of H2S

Corrosion Engineering, Science and Technology, 52:5 (2017) 325-331

[88] A. Giuri, S. Masi, S. Colella, A. Listorti, A. Rizzo, A. Liscio, E. Treossi, V. Palermo, G. Gigli, C. Mele, C. Esposito Corcione

GO/PEDOT:PSS nanocomposites: effect of different dispersing agents on rheological, thermal, wettability and electrochemical properties

Nanotechnology, 28 (2017) 174001 (11 pp)

[89] G.P. De Gaudenzi, C. Mele, B. Bozzini

Corrosion mechanisms of hardmetal in different applications.

Meccanismi di corrosione del metallo duro in ambiti applicativi diversi.

La Metallurgia Italiana 7-8 (2017) 115-118

[90] B. Bozzini, M. Amati, C. Mele, A. Knop-Gericke, E. Vesselli

An in situ near-ambient pressure X-ray Photoelectron Spectroscopy study of CO2 reduction at Cu in a SOE cell

Journal of Electroanalytical Chemistry, 799 (2017) 17-25

[91] C. Mele, P. Bocchetta, B. Bozzini

Characterization of the particulate anode of a laboratory flow Zn-air fuel cell

Journal of Applied Electrochemistry, 47 (2017) 877-888

 

2018

[92] F. Lionetto, C. Mele, P. Leo, S. D'Ostuni, F. Balle, A. Maffezzoli

Ultrasonic spot welding of carbon fiber reinforced epoxy composites to aluminum: mechanical and electrochemical characterization

Composites Part B, 144 (2018) 134-142

[93] A. Giuri, S. Colella, A. Listorti, A. Rizzo, C. Mele, C. Esposito Corcione

GO/glucose/PEDOT:PSS ternary nanocomposites for flexible supercapacitors

Composites Part B, 148 (2018) 149–155

[94] M. Catalano, A. Taurino, J. Zhu, P.A. Crozier, S. Dal Zilio, M. Amati, L. Gregoratti, B. Bozzini, C. Mele

Dy- and Tb-doped CeO2-Ni cermets for solid oxide fuel cell anodes: electrochemical fabrication, structural characterization, and electrocatalytic performance

Journal of Solid State Electrochemistry, 22 (2018) 3761-3773

[95] B. Bozzini, M. Altissimo, M. Amati, P. Bocchetta, A. Gianoncelli, L. Gregoratti, G. Kourousias, L. Mancini, C. Mele, M. Kiskinova

In situ and ex situ x-ray microspectroelectrochemical methods for the study of zinc-air batteries (Book Chapter)

Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Encyclopedia of Interfacial Chemistry

Surface Science and Electrochemistry (2018) 174-194

 

2019

[96] B. Bozzini, M. Kazemian, M. Kiskinova, G. Kourousias, C. Mele, A. Gianoncelli

Operando soft X‐ray microscope study of rechargeable Zn–air battery anodes in deep eutectic solvent electrolyte

X-Ray Spectrometry (2019) 527-535

[97] B. Bozzini, C. Mele, M.C. D’Autilia, I. Sgura

Dynamics of zinc-air battery anodes: an electrochemical and optical study complemented by mathematical modeling.

Dinamica di anodi per batterie zinco-aria alcaline: studio elettrochimico, ottico e modellizzazione matematica.

La Metallurgia Italiana 7-8 (2019) 33-40

[98] F. Rossi, E. Vesselli, G. Cautero, C. Dri, P. Pittana, A. Gubertini, M. Bevilacqua, C. Mele, B. Bozzini

Design, assembly and operation of a primary Zinc-Air flow battery equiped with an automatic control system.

Progettazione, costruzione ed esercizio di una batteria primaria a flusso zinco-aria equipaggiata con sistema di controllo automatico.

La Metallurgia Italiana 7-8 (2019) 51-57

[99] T. Donateo, C. Mele, F. Rossi, B. Bozzini

Characterization of Zn-air fuel cells for usage in energy storage and propulsion system.

ICCEP 2019 - 7th International Conference on Clean Electrical Power: Renewable Energy Resources Impact (2019) 518-526

 

2020

[100] C. Mele, F. Lionetto, B. Bozzini

An Erosion-Corrosion Investigation of Coated Steel for Applications in the Oil and Gas Field, Based on Bipolar Electrochemistry

Coatings 10 (2020) 92

[101] G.P. De Gaudenzi, S. Tedeschi, C. Mele, B. Bozzini

The effect of binder composition on the tribo-corrosion behavior of cemented carbides in simulated tetraphasic flows.

In Proceedings of the Euro PM 2018 Congress and Exhibition, Bilbao, Spain; Paper 3390848 (2020)

[102] F. Rossi, C. Mele, M. Boniardi, B. Bozzini

Electrodeposition of Zinc from Alkaline Electrolytes Containing Quaternary Ammonium Salts and Ionomers: Impact of Cathodic-Anodic Cycling Conditions

ChemElectroChem 7 (2020), 1752–1764

[103] B. Bozzini, C. Mele, A. Veneziano, N. Sodini, G. Lanzafame, A. Taurino, L. Mancini

Morphological evolution of Zn-sponge electrodes monitored by in situ X-ray computed microtomography

ACS Applied Energy Materials 3 (2020) 4931-4940

Scarica pubblicazioni

Risorse correlate

Documenti