- Corsi di Laurea
- Laurea in MANAGEMENT DIGITALE
- MATEMATICA PER LE DECISIONI AZIENDALI
MATEMATICA PER LE DECISIONI AZIENDALI
- Insegnamento
- MATEMATICA PER LE DECISIONI AZIENDALI
- Insegnamento in inglese
- MATHEMATICS FOR COMPANY DECISIONS
- Settore disciplinare
- SECS-S/06
- Corso di studi di riferimento
- MANAGEMENT DIGITALE
- Tipo corso di studio
- Laurea
- Crediti
- 8.0
- Ripartizione oraria
- Ore Attività Frontale: 48.0
- Anno accademico
- 2024/2025
- Anno di erogazione
- 2024/2025
- Anno di corso
- 1
- Lingua
- ITALIANO
- Percorso
- GENERALE
- Sede
- Lecce
Descrizione dell'insegnamento
Si richiedono le conoscenze di base di matematica acquisite durante il percorso di scuola secondaria superiore, con particolare riferimento ai seguenti contenuti:
A) Numeri naturali, numeri interi e numeri razionali. Massimo comune divisore e minimo comune multiplo. Calcolo di percentuali. Potenze e radicali.
B) Polinomi. Somma e prodotto di polinomi. Quadrato e cubo di un binomio. Prodotti notevoli. Fattorizzazione di semplici polinomi. Divisione tra polinomi. Espressioni razionali. Somma e prodotto di espressioni razionali.
C) Equazioni e disequazioni di primo e di secondo grado. Equazioni e disequazioni con espressioni razionali.
D) Geometria analitica del piano. Distanza tra due punti. Equazione della retta. Equazione della parabola. Equazione della circonferenza.
Calcolo differenziale ed integrale. Principi di ottimizzazione per funzioni reali. Elementi di algebra lineare.
Al termine del corso, lo studente/la studentessa conosce i concetti di base della matematica applicata relativi alle funzioni reali, ai problemi di ottimizzazione. Inoltre, è capace di formalizzare, interpretare e risolvere semplici problemi matematici a supporto delle decisioni aziendali, anche mediante procedure algoritmiche sul calcolatore.
Risultati attesi secondo i descrittori di Dublino:
Conoscenza e capacità di comprensione (knowledge and understanding)
Conoscenza e capacità di comprensione del linguaggio logico-matematico, dell’algebra matriciale, dei principi fondamentali delle funzioni reali, dei principali metodi di ottimizzazione.
Capacità di applicare conoscenza e comprensione (applying knowledge and understanding)
Capacità di formalizzare problemi di interesse economico/aziendale nel linguaggio matematico.
Capacità di risolvere problemi di interesse economico/aziendale mediante tecniche quantitative, anche mediante l’uso di procedure algoritmiche.
Autonomia di giudizio (making judgements)
Capacità di riconoscere semplici modelli matematici di interesse economico/aziendale, valutandone criticamente i principali aspetti.
Abilità comunicative (communication skills)
Capacità di comunicare con un linguaggio appropriato le caratteristiche fondamentali di un semplice modello matematico.
Capacità di apprendimento (learning skills)
Capacità di apprendimento dei principali strumenti matematici necessari per continuare in modo autonomo il proprio percorso formativo.
Lezioni frontali ed esercitazioni (anche mediante l’uso del calcolatore).
Modalità di esame: prova scritta.
Modalità di accertamento: L'accertamento degli obiettivi formativi avviene tramite una prova scritta con esercizi e con quesiti di carattere teorico.
In relazione alla prova scritta è valutata correttezza e chiarezza nelle risposte, nonché la capacità di usare adeguatamente il formalismo matematico ed applicare in modo appropriato strumenti teorici a casi concreti. Prototipo della prova d’esame sarà messo a disposizione sulla pagina web dell’insegnamento su elearning.unisalento.it.
Non sono previste differenze nelle modalità d’esame fra studenti frequentanti e non frequentanti. Gli studenti potranno anche sostenere l’esame in prove intermedie parziali. A tal proposito, maggiori informazioni saranno disponibili sulla pagina web dell’insegnamento su elearning.unisalento.it.
L’Università del Salento “promuove e garantisce l’inclusione e la partecipazione effettive degli studenti con disabilità” (art. 10 dello Statuto). Lo studente/la studentessa disabile e/o con DSA, che intende usufruire di un intervento individualizzato per lo svolgimento della prova d’esame deve contattare l'ufficio Integrazione Disabili dell'Università del Salento all'indirizzo e-mail paola.martino@unisalento.it
Materiale didattico e tutte le informazioni sull’insegnamento (incluso orario di ricevimento) saranno disponibili sulla pagina web dell’insegnamento su elearning.unisalento.it.
Insiemi e numeri. Elementi di logica. Connettivi logici. Quantificatori. Insiemi. Operazioni tra insiemi. Insiemi numerici. I numeri reali: definizioni e proprietà. Equazioni e disequazioni. Distanza tra numeri. Il valore assoluto. Intervalli e intorni.
Sistemi di equazioni lineari e matrici. Prodotto cartesiano. Rappresentazione del piano cartesiano. Distanza nel piano. Rette. Sistemi di equazioni lineari. Vettori. Matrici. Determinanti. Matrice inversa. Risoluzione di sistemi di equazioni lineari mediante matrici.
Le funzioni. Relazioni e funzioni. Funzioni reali di variabile reale. Dominio e insieme immagine. Grafico di una funzione. Funzioni monotone. Funzioni convesse. Funzioni elementari (funzione lineare, funzione quadratica, funzione potenza). Funzioni goniometriche (cenni). Trasformazioni elementari del grafico di funzioni. Composizione di funzioni. Funzioni inverse.
Proprietà delle funzioni. Funzioni razionali. Gli asintoti. Definizione di limite di una funzione. Proprietà dei limiti. Il numero di Eulero. La funzione esponenziale. La funzione logaritmo. Applicazione: capitalizzazione semplice e composta. Funzioni continue e loro proprietà.
Derivata. Significato geometrico. Derivata di funzioni monotone. Derivata di funzioni concave/convesse. Derivata di funzioni elementari. Derivata di funzioni composte. Approssimazione lineare.
Ottimizzazione. Massimi e minimi locali e globali. Teorema di Weierstrass. Condizione necessaria per punti estremi interni (teorema di Fermat). Condizione sufficiente per punti estremi interni. Punti di flesso. Grafico qualitativo di una funzione.
Integrazione. Primitiva di una funzione. Integrali indefiniti. Formule generali per il calcolo di integrali. Integrali di funzioni elementari. Teorema fondamentale del calcolo integrale. Integrali definiti. Integrale come area. Integrazione per sostituzione. Cenni alla risoluzione di equazioni differenziali ordinarie mediante separazione delle variabili.
Funzioni di più variabili. Calcolo del dominio. Derivate parziali. Alcuni problemi di ottimizzazione libera.
Il materiale didattico (appunti ed esercitazioni) è distribuito attraverso la pagina web dell’insegnamento su elearning.unisalento.it.
Per studio individuale ed esercitazioni, si consiglia:
Puccetti, G.: Matematica per il Corso di Economia e Management, 2023. La versione pdf (con esercizi) è disponibile gratuitamente su
https://libri.unimi.it/index.php/milanoup/catalog/book/112
Sydsater, K.; Hammond, P.; Strom, A. e Carvajal, A.: Metodi Matematici per l’Economia, Pearson, 2021. Quinta edizione.
Capitoli 0 (tranne sezioni 0.14, 0.15, 0.17, 0.19), 1, 2, 3, 4 (solo sezioni 4.4, 4.8, 4.9, 4.10, 4.12), 5 (tranne 5.5), 6 (solo sezioni 6.1, 6.2, 6.3, 6.6, 6.8), Sezioni 8.1, 8.2, 10.1, 10.2, 10.3, Capitolo 12 (tranne sezioni 12.8, 12.9), Sezioni 13.1, 13.2, 13.6, 13.8.
Semestre
Primo Semestre (dal 13/09/2024 al 31/12/2024)
Tipo esame
Obbligatorio
Valutazione
Scritto e Orale Congiunti - Voto Finale
Orario dell'insegnamento
https://easyroom.unisalento.it/Orario