ANALISI MATEMATICA E GEOMETRIA I (MOD.A/B)

Insegnamento
ANALISI MATEMATICA E GEOMETRIA I (MOD.A/B)
Insegnamento in inglese
MATHEMATICAL ANALYSIS AND GEOMETRY 1 (MOD. A/B)
Settore disciplinare
MAT/05
Corso di studi di riferimento
INGEGNERIA INDUSTRIALE
Tipo corso di studio
Laurea
Crediti
12.0
Ripartizione oraria
Ore Attività frontale: 108.0
Anno accademico
2019/2020
Anno di erogazione
2019/2020
Anno di corso
1
Lingua
ITALIANO
Percorso
PERCORSO COMUNE
Docenti responsabili dell'erogazione
CITO SIMONE
FARINA ANTONIO
Sede
Brindisi

Descrizione dell'insegnamento

PROGRAMMA DI ANALISI MATEMATICA

Insiemi numerici. L'insieme dei numeri interi. L'insieme dei numeri razionali. L'insieme dei numeri reali. Assiomi di campo e dell'ordine. Valore assoluto. Intervalli e intorni. Maggioranti e minoranti. Insiemi limitati superiormente e inferiormente. Massimo e minimo di un insieme. Estremi inferiore e superiore. Caratterizzazione dell'estremo superiore e dell'estremo inferiore (DIM.). Assioma di completezza. Non completezza dell'insieme dei numeri razionali: esistenza ed irrazionalità della radice quadrata di 2 (DIM. dell'irrazionalità). Proprietà archimedea. Densità di Q in R.

Funzioni. Definizione di funzione. Funzioni iniettive, suriettive e biiettive. Funzioni composte. Funzioni inverse. Funzione identità.

Funzioni reali di una variabile reale. Proprietà algebriche. Funzioni limitate superiormente e inferiormente. Massimo, minimo, estremo superiore ed estremo inferiore di una funzione. Funzioni monotone e proprietà. Funzioni monotone in un punto e relazioni con la proprietà globale. Funzioni pari, dispari, periodiche.

Funzioni elementari. Definizioni e grafici.

Numeri complessi. Il campo dei numeri complessi. Forma algebrica di un numero complesso. Modulo e coniugato. Coordinate polari. Forma trigonometrica ed operazioni in forma trigonometrica. Forma esponenziale. Radici di un numero complesso. Teorema fondamentale dell'algrbra. Applicazioni: risoluzione di equazioni algebriche nel campo complesso.

Successioni. Definizione di successione. Teorema di unicità del limite (DIM.). Limitatezza delle successioni convergenti. Teorema sul limite delle successioni monotone. Teoremi di confronto. Operazioni sui limiti. Successioni estratte. Teorema di Bolzano-Weierstrass. Forme indeterminate. Alcuni limiti notevoli. Principio di induzione e applicazioni.

Limiti. Punti di accumulazione e punti isolati. Limite di funzione reale di variabile reale: definizione. Unicità e prime proprietà. Limiti destri e sinistri e proprietà. Caratterizzazione del limite mediante successioni. Applicazioni: non esistenza di limiti. Teoremi di confronto per i limiti. Operazioni sui limiti. Limite delle funzioni composte. Limiti delle funzioni monotone. Limiti delle funzioni elementari. Forme indeterminate. Limiti notevoli.

Continuità. Continuità in un punto e in un insieme. Punti di discontinuità: eliminabili, di prima e di seconda specie. Operazioni sulle funzioni continue. Continuità delle funzioni composte. Continuità delle funzioni elementari. Teorema di Weierstrass. Teorema di esistenza degli zeri. Uniforme continuità e teorema di Cantor. Funzioni lipschitziane e relazioni con la uniforme continuità e la continuità. Asintoti verticali, orizzontali ed obliqui.

Calcolo differenziale. Definizione di derivata. Funzioni derivabili. Interpretazione geometrica della derivata. Retta tangente al grafico di una funzione derivabile. Continuità delle funzioni derivabili (DIM.). Derivate sinistre e destre. Punti angolosi e punti cuspidali. Regole di derivazione e derivate delle funzioni elementari. Teorema di Rolle (DIM.), Teorema di Cauchy (DIM.) e Lagrange (DIM.). Teorema di de L'Hopital e applicazioni. Relazioni tra derivata e monotonia. Condizione necessaria per massimi e minimi relativi. Ricerca dei punti di massimo e minimo relativo ed assoluto. Caratterizzazione della crescenza e della stretta crescenza. Criteri per punti di massimo e minimo relativo. Convessità, concavità e punti di flesso: nozione globale e locale. Studio della convessità e dei punti di flesso: condizioni necessarie e criteri. Studio del grafico di una funzione reale. Polinomi di Taylor. Formula di Taylor con il resto di Peano e di Lagrange. Applicazioni al calcolo dei limiti.

Calcolo integrale. Funzioni integrabili secondo Riemann. Interpretazione geometrica dell'integrale. Proprietà degli integrali. Integrabilità delle funzioni monotone, continue e continue a tratti. Esempio di funzione non integrabile secondo Riemann (DIM.). Teorema della media integrale (DIM.). Primitive di una funzione e proprietà. Integrale indefinito. Integrale definito e funzione integrale di una funzione continua. Teorema fondamentale del calcolo integrale (DIM.). Regole di integrazione. Applicazioni. Integrali impropri. Cenni sull'approssimazione numerica degli integrali: il metodo dei trapezi con applicazioni.

 

PROGRAMMA DI GEOMETRIA

Strutture algebriche. Leggi di composizione. Gruppi. Anelli. Campi.

Matrici. Definizione, classi di particolari di matrici. Operazioni di trasposizione, somma e prodotto. Definizione di determinante e proprietà. Primo e secondo teorema di Laplace. Teorema di Binet. Rango di una matrice. Condizione per l’invertibilità di una matrice (DIM.). Calcolo della matrice inversa.

Sistemi di equazioni lineari. Sistemi di equazioni lineari. Operazioni elementari sui sistemi lineari: il metodo di eliminazione di Gauss. Sistemi lineari omogenei. Forma matriciale di un sistema. Il teorema di Cramer. Il teorema di struttura per i sistemi lineari (DIM.). Il teorema di Rouché-Capelli (DIM.). Sistemi lineari dipendenti da parametri.

Spazi vettoriali. Definizione di spazio vettoriale. Sottospazi: somma e somma diretta di sottospazi, intersezione di sottospazi. Combinazioni lineari, dipendenza e indipendenza, insieme di generatori, spazi vettoriali finitamente generati. Basi di spazi vettoriali: proprietà ed esistenza, completamento ed estrazione, dimensione di uno spazio vettoriale. Formula di Grassmann.

Applicazioni lineari. Definizioni, nucleo e immagine. Applicazioni lineari iniettive, suriettive. Il teorema fondamentale. Endomorfismi di uno spazio vettoriale. Matrice associata ad un endomorfismo rispetto ad una base. Cambiamento di base e matrici simili. Isomorfismi.

Autovalori e autovettori. Autovettori e autovalori di un endomorfismo. Il polinomio caratteristico di una matrice e di un endomorfismo. Autospazi. Molteplicità algebrica e molteplicità geometrica di un autovalore. Endomorfismi semplici e matrici diagonalizzabili. Basi di autovettori. Semplicità e criterio relativo. Procedimento di diagonalizzazione.

Semestre
Primo Semestre (dal 23/09/2019 al 20/12/2019)

Tipo esame
Obbligatorio

Valutazione
Orale - Voto Finale

Orario dell'insegnamento
https://easyroom.unisalento.it/Orario

Scarica scheda insegnamento (Opens New Window)